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Abstract

The Norwegian government has decided that the aquaculture industry shall grow, provided

that the growth is environmentally sustainable. Sustainability is scored based on the mortal-

ity of wild salmonids caused by the parasitic salmon lice. Salmon lice infestation pressure

has traditionally been monitored through catching wild sea trout and Arctic char using nets

or traps or by trawling after Atlantic salmon postsmolts. However, due to that the Norwegian

mainland coastline is nearly 25 000 km, complementary methods that may be used in order

to give complete results are needed. We have therefore developed an operational salmon

lice model, which calculates the infestation pressure all along the coast in near real-time

based on a hydrodynamical ocean model and a salmon lice particle tracking model. The

hydrodynamic model generally shows a negative temperature bias and a positive salinity

bias compared to observations. The modeled salmon lice dispersion correlates with mea-

sured lice on wild salmonids caught using traps or nets. This allows for using two comple-

mentary data sources in order to determine the infestation pressure of lice originating from

fish farms on wild salmonids, and thereby provide an improved monitoring system for

assessing risk and sustainability which forms the basis for knowledge-based advice to man-

agement authorities.

Introduction

Norway is at present the world’s leading producer of Atlantic salmon and 1.24 million tons of

salmon were sold from fish farms in 2016 (Statistics Norway). The value of this production

was 59.9 billion NOK (7.19 billion USD). The Norwegian government has decided that the

production shall continue to grow, provided that it can be done in an environmentally sustain-

able way [1]. This is thus implemented through the division of the Norwegian coast into 13

production zones. In each of these, an environmental indicator shall be used to determine if

the effect is low, moderate or high. In these cases, the farming industry is allowed to grow

(green), freeze production (yellow) or have to reduce the production (red). The system is

therefore nicknamed the “Traffic light system” [2]. The only indicator used to measure
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sustainability is at present the effect of salmon lice (Lepeophtheirus salmonis), released from

salmonid farms, on the mortality of wild salmonid fish [1].

The parasitic salmon lice feeds on mucus, skin, muscle and blood of their host, and infesta-

tions may scale from physiological effects to mortality [3]. The parasitic salmon lice are found

only on salmonid hosts, in Norway this includes Atlantic salmon (Salmo salar), Sea trout

(Salmo trutta), anadromous Arctic char (Salvelinus alpinus) and farmed rainbow trout (Oncor-
hynchus mykiss). The lice hatch directly from the paired eggstrings as pelagic nauplius I, which

molts into pelagic nauplius II, and thereafter to the infective copepodids which remains pelagic

until it attaches to a host. It takes approximately 40 degree-days from hatching to reach the

copepodid stage. If unsuccessful in finding and attaching to a host, the copepodids die after

170 degree-days, leaving an infective window from 40 to 170 degree-days after hatching [4,5].

Later stages (chalimus I and II, preadult I and II, and adult) live on the host and are usually not

infective. The stages that live on the host are divided into sessile (chalimus I and II) and mobile

(preadult I, II and adult) lice based on their ability to move around on the fish. During the

planktonic stages (nauplii and copepodid) the salmon louse is known to react to external sti-

muli as light and salinity by vertical swimming [6–9]. The lice react to light by migrating

towards the surface during the day and sink down during night [9–10]. At the same time, it

has been shown in laboratory experiments that salmon lice avoid low-salinity water [8,11].

Due to different results on the lower salinity threshold from the experiments, previous model-

ing experiments have used salinity at 20 as the lower limit [4,10,12]. And the low-salinity

avoidance is assumed to be stronger than the light attraction due to physiological responses

causing reduced survival in low-salinity water [11].

A continuous monitoring is needed to identify areas where the salmon lice densities are so

high that that it poses an unacceptable high risk of mortality for wild salmonid fish. Several

models describing the infection pressure from farms based on both hydrodynamic models [4–

5,10,12–21] and statistical [2,22–25] models are developed. Helland et al. 2015 [26] unsuccess-

ful attempting to predict infection on similar material as used here, using a statistical approach

where infection pressure was estimated by distance. Their analysis showed a strong influence

of environmental variables on infestation pressure, however, only monthly lice counts in farms

was available, in addition to low resolution temperature data and using freshwater discharge as

a proxy for salinity variations.

Over the last ~15 years models based on hydrodynamic circulation has been implemented

as a tool to predict the drift of the planktonic stages of salmon lice with water currents [4–

5,10,12–21]. These models have shown that the water currents may transport the lice tens of

kilometers from the source farm [10]. Strong pulsating currents transport lice into the fjords,

occurring about every 2 to 3 weeks, followed by a period of transportation out of the fjord

again [10]. The pulsating nature of water currents are confirmed by current observations and

often found to be more constrained to the surface and stronger during summer compared to

winter. In addition to the calculated transport distances, the models have revealed lice densities

with great spatial patchiness [27]. High density of lice is found to aggregate in smaller areas,

often along land and within eddies. The high temporal and spatial variability of the current

field make realistic salmon lice dispersion pattern difficult to calculate without knowledge of

hydrodynamic circulation. The relatively long pelagic stage of the lice where the larvae drift

with water currents means that the lice may infest a large area, and that the size of the infective

area may be heavily affected by temperature as this affects longevity of the infectious stage [28–

29].

The salmon lice particle tracking model has been developed to include realistic salmon lice

release from all farms based on reported number of lice on farmed fish. The numerically calcu-

lated distribution of lice is shown to be in good agreement with the observed newly infested
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lice on wild fish [12], farmed fish [21] and fish in sentinel cages [4]. However, as discussed in

Sandvik et al. 2016 [30], comparison of point measurements and model estimates in a fluctuat-

ing field is not trivial. In Sandvik et al. 2016 [4] salmon lice estimated with the particle tracking

model was validated against salmon lice observations on fish in sentinel cages in the Hardan-

gerfjord 2012–2016, using validation methods from numerical weather forecast [31].

Here, we present a mechanistic approach which includes both hydrodynamics and lice

behavior. This kind of operational salmon lice model system facilitates a comprehensive

approach including dynamical modeling of the lice infestation pressure, considering all envi-

ronmental variables (circulation, temperature, salinity, wind) with local variations along the

fjord axis, regional variations between neighboring fjords and national variations along the

entire Norwegian coast. The development of salmon lice particle tracking models using hydro-

dynamic currents have roughly followed the same development in Norway as in Scottish and

Faroese waters [15–20].

The establishment of an 800 m x 800 m horizontally resolved modelling system (Nor-

Kyst800) covering the whole Norwegian coastline, running operationally (real-time) by the

Norwegian Meteorological Institute (MET Norway) has made operational salmon lice simula-

tions with realistically hydrodynamical transport routes possible [32]. Based on results from

NorKyst800, the Institute of Marine Research (IMR) runs the salmon lice model and publishes

the results online every week, showing total number of copepodids summed over the last 10

days. The modeled distribution of copepodids is based on release of nauplii from all active fish

farms. The number of nauplii is calculated from the reported level of adult females, biomass

(number of fish) and temperature [24], provided by each farm on a weekly (temperature and

adult females) or monthly (biomass) basis. The model results are used to guide the adaptive

field monitoring part of the system, where regions with elevated salmon lice infestation pres-

sure is confirmed by counting lice on wild trout.

The overall goal with this paper is to contribute to the knowledge base making the founda-

tion of an environmental sustainable growth in Norwegian aquaculture. The specific objectives

of this paper are (1) to describe the operational salmon lice model, and (2) to further assess the

quality of the monitoring system, which are necessary for giving an accurate and robust assess-

ment of the lice infestation pressure. For the first time, we can now present a hydrodynamic

ocean model system that covers the entire Norwegian coastline and the quality of the modeled

infestation pressure is tested against observations on wild caught trout and char. By using two

complementary data sources; the operational model and wild fish data, we can provide an

improved system for assessment of risk and sustainability, which forms the foundation for

knowledge-based advice to management authorities.

In this paper, we will refer to the national operational monitoring system to both include

the operational salmon lice model and the wild fish data, where the operational salmon lice

model is a combination of a hydrodynamical ocean model and a salmon lice particle tracking

model.

Material and methods

Background

The Atlantic salmon post-smolt leave their respective rivers during spring time and are

exposed to salmon lice in the fjord and coastal region as they pass through on their way

towards the open ocean. The post-smolt migration starts in the beginning of May in southern

Norway, and the timing is delayed northwards, reaching the end of June in northern Norway

[33–35]. The exposure time of the post-smolt to the lice in the fjord is also highly variable

depending on the distance from the river to the coast and with the progressing speed and

Operational salmon lice monitoring system
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route of the smolt [34]. The sea trout and Arctic char spend more time in the coast or fjord

during summer and is therefore susceptible to elevated infestation pressure for a longer time

period, up to four months [36–37]. Field monitoring is focused on these two periods; the first

period, which is most relevant for salmon post-smolt migration, and the second period which

is most relevant for sea trout and arctic char, with several teams operating along the entire

coast fishing for wild salmonids with trawls, traps and gillnets. The focus in this paper will be

on the first period early in spring. This is done for two reasons; 1) The government has decided

that the impact of salmon lice on wild salmon is the most important indicator controlling the

aquaculture industry growth, thus far, and 2) The observational data is considered to be of

higher quality in the first period. This because the infestation pressure normally increases dur-

ing summer, the sea trout and sea char may show premature return to fresh and brackish

water to mitigate lice infestations [38], thus both reducing the catchability of trout in fjords

with elevated infestation pressure and complicating the interpretation of the observations in

the second period. However, it is important to bear in mind that the impact of salmon lice on

sea trout can be substantial, and often even stronger than the impact on salmon [39].

Study area

The study covers the entire Norwegian coastline, which is more than 100.000 km long includ-

ing fjords, islands and bays and 25.000 km without the islands. A study area this large requires

intensive effort and sophisticated monitoring tools, as morphology (coastline and bathymetry)

is irregular and complex. The Norwegian coastal current provides a steady, though highly

dynamic flow along the coastline, advecting salmon lice and other planktonic organisms

northwards. The conditions in the fjords are strongly connected to the coastal water through

baroclinic internal waves [10]. In the ‘production zone regulations’ (2017) the Norwegian

coast was divided into 13 production zones (Fig 1). Ådlandsvik (2015) [40] used the Nor-

Kyst800 model to calculate the exchange of lice between all salmon farms in operation and

clustered them together based on the connectivity. The clusters, i.e. the production zones, are

constructed to have minimum connectivity between clusters.

Hydrodynamic ocean model

The Norwegian Meteorological Institute (MET Norway) is responsible for operational ocean

monitoring and forecasting of the Norwegian waters. The operational suite of ocean models at

MET Norway utilize a one-way nested system consisting of three ROMS (Regional Ocean

Modeling System, www.myroms.org) models [41–42]. ROMS is a free-surface, terrain-follow-

ing, hydrostatic, primitive equations ocean model. The models are Arctic20 covering the

whole Arctic Ocean using 20 km horizontal resolution, Nordic4 covering the North Sea, Nor-

dic Seas and Barents Sea using 4 km horizontal resolution, and NorKyst800 as the innermost

model covering the Norwegian coast with 800 m horizontal resolution.

The NorKyst800 model was developed through a collaboration between the Institute of

Marine Research, MET Norway and The Norwegian Institute for Water Research (NIVA),

and put in operational mode late in June 2012. Since then, daily averaged model results for the

salinity, temperature, velocity fields and sea surface height have been publicly available, from

http://thredds.met.no/thredds/catalog/fou-hi/norkyst800m/catalog.html.

The bathymetry and coastline in the NorKyst800 configuration were derived by interpola-

tion of data from two high-resolution products (data with a resolution of about 50 m from

Norge Digitalt [http://www.norgedigitalt.no] and the 900 m product from GEBCO_08 [Gen-

eral Bathymetric Chart of the Oceans, http://www.gebco.net]). Additional adjustments of the

800 m coastline were necessary to replicate the real coastline as well as possible and to open

Operational salmon lice monitoring system
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narrow straits less than 800 m wide but still important for the local circulation. To avoid

model instability and/or spurious deep currents, the final masked bathymetry was smoothed.

The boundary condition formulations used in ROMS are the Chapman condition for free

surface [43], Flather condition for 2D momentum [44], and nudging and radiation for tracers

and 3D momentum [45]. There is also a 15 grid-point nudging zone encircling the domain

where nudging towards the outer model is performed at a timescale of 50 days for tracers and

Fig 1. Map of study area. Stations where wild fish were caught during the national monitoring program for salmon lice on wild salmonids in 2015 (cyan), 2016

(magenta) and 2017 (blue), covering all the 13 production zones.

https://doi.org/10.1371/journal.pone.0201338.g001
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3D momentum. Subgrid-scale vertical mixing processes are parameterized using the Generic

Length Scale (GLS) scheme, tuned to behave like the Mellor-Yamada 2.5 (k-kl) closure scheme

using a parabolic wall function with free surface correction (k-kl_oc) [46–47], according to

[48]. All models use 35 vertical levels, and parameters are chosen to get increased resolution

toward the surface.

Atmospheric forcing is taken from the global ECMWF operational analyses and forecast

(0.125-degree horizontal resolution) for the Arctic20 and Nordic4 models. For NorKyst800 we

use the non-hydrostatic 2.5 km AROME MetCoOp regional atmospheric model [49], blended

into the ECMWF fields [50] using a linear transition zone of 15 grid points to cover the parts

of NorKyst800 that are outside the AROME MetCoOp domain. Fields of atmospheric forcing

include mean sea level pressure, temperature at 2 m, u- and v-component of wind at 10 m, spe-

cific humidity at 2 m, rain rates and total cloud cover. Fluxes are calculated using ROMS inter-

nal bulk flux routine. The sea ice module in ROMS [51] is applied in order for the model to

allow freezing of in-fjord surface water during winter.

Freshwater discharges for the Norwegian rivers are specified by daily climatological values

based on historical results from the HBV model of the NVE (Norwegian Water Resources and

Energy Directorate) [52]. Discharges are distributed linearly from the surface down to a pre-

scribed depth for each river.

Hydrographic observations

In order to assess the quality of the model results, we compared results for temperature and

salinity during the period January 2015—December 2016 with observational data. For this pur-

pose, relevant vessel data were retrieved from the Copernicus Marine Environment Monitoring

Service (CMEMS, http://marine.copernicus.eu/), see S1 Fig. During this time period observa-

tions from vessels were taken at a total of 4732 positions inside the model domain (2015: 2601;

2016: 2131). These data were retrieved from CMEMS products INSITU_ARC_TS_REP_

OBSERVATIONS_013_037 and INSITU_ARC_NRT_OBSERVATIONS_013_031.

Model results were retrieved from the dates and grid cells representing the time and posi-

tions of the observations. Then, observations and model results were integrated vertically

using linear weights, in preselected z and S layers (S layers were defined as the vertical intervals

between pre-selected isohalines in the observations). The linear weights were applied in order

to account for irregular sampling in depth and salinity space. Representation in S layers were

included since coastal systems are usually highly stratified in salinity. In the tables (Tables 1

and 2) that show evaluation statistics the results are computed over 5 depth ranges, as indi-

cated in the leftmost column. Bias is defined as subtracting observations from corresponding

model results. RMS is the root mean square difference between observations and their corre-

sponding model results. For Table 2 the metrics were calculated between isohaline surfaces.

Here, only observations from which temperature and salinity data are both available, are

considered.

Table 1. Evaluation statistics including 2015 and 2016 over depth ranges.

z layer Depth (m) Temperature Salinity

no. Bias RMS no. Bias RMS

1 0–5 2637 -0.4 0.9 3342 0.94 1.44

2 5–25 2545 -0.2 0.7 2408 0.62 0.92

3 25–100 2468 -0.2 0.7 2328 0.34 0.54

4 100–300 1586 -0.6 1.1 1519 0.15 0.32

5 300–700 175 -1.0 2.1 174 0.01 0.17

https://doi.org/10.1371/journal.pone.0201338.t001
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Salmon lice particle tracking model

The salmon lice model was developed with the purpose to map the horizontal distribution of

infectious salmon lice from aquaculture sites in the water masses. The release of newly hatched

lice larvae (nauplii) is calculated based on number of adult female lice reported from the aqua-

culture sites, as described by Stien et al. (2005) [24]. As the lice are hatched and released to

drift freely in the ocean, the model calculates the transport along the currents as they undergo

three planktonic larvae stages (two naupliar stages and one copepodid stage), where they are

infectious to salmonid fish during the latter.

Model design. To calculate the transport of lice from a release position the lice dispersion

model uses the horizontal current components where the transport of every particle is followed

in a lagrangian field using 4th order Runge kutta scheme [53] with timestep (@t) of 300 s. The

position of every lice particle is stored every hour. The dispersion model uses reflective border

at the surface. If the lice-particles were about to drifting onshore, they were held at its position

until a shift in the currents transporting them away from the land border. Lice reaching the

outer ocean border were removed from further calculations.

Age and mortality. The age of the lice particles was calculated in degree-days, being the

integrated temperature over time. The lice were assumed to enter the infective copepodid

stage at 40 degree-days [54]. Past 170 degree-days all lice were assumed to be dead from senes-

cence and removed from calculations [54]. A constant mortality of 0.17 day-1 was assumed for

all salmon lice, during all planktonic stages. This is a mortality on the scale that is normal for

pelagic invertebrates of this size [6,55].

Vertical swimming. All salmon lice were given the ability to swim vertically. The swim-

ming velocity was set to 5�10−4 ms-1 for all planktonic stages [56]. The direction was set to be

upwards towards the surface when the light level exceeded a critical level of 2�10−5 μmol pho-

ton s-1m-2 during the nauplii stages and 0.392 μmol photon s-1m-2 during the copepodid stage

[57]. When exposed to salinity levels under 20 the lice swam down [11]. When exposed to low

salinity levels and light conditions, the low salinity avoidance was assumed to be the strongest

trigger, and the lice swam down.

Light parameterization. The surface light (L0) at every salmon lice position is calculated

from latitude (φ) and time of day (t), according to Skartveit and Olseth [57], where the level of

irradiance was set to 1500 μmol photon s-1m-2 at midday and 5.76 μmol photon s-1m-2 at twi-

light, as described by Johnsen et al. [14]. From the surface to depth (z) the light is assumed to

decrease according to Eq (1), where the attenuation coefficient (k) was set constant k = 0.2

[58]. The attenuation coefficient is known to correlate with salinity, oxygen and chlorophyll

[58], but for the present investigation we found our simpler formulation to suffice [14].

Lz ¼ Loðφ; tÞ�e� kz ð1Þ

Table 2. Evaluation statistics including 2015 and 2016 over isohaline surfaces.

S layer Salinity range (obs) no. Temperature Salinity

Bias RMS Bias RMS

1 20.0–33.5 658 -0.3 0.9 1.84 2.30

2 33.5–34.5 1456 -0.1 1.1 0.64 0.81

3 34.5–34.9 1491 -0.1 1.1 0.29 0.50

4 34.9–36.0 1933 -0.4 0.7 0.11 0.26

https://doi.org/10.1371/journal.pone.0201338.t002
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Diffusion. Due to lack of precise knowledge of subgrid scale processes and fluctuating

swimming motion by the salmon louse itself, all lice were given a random movement compo-

nent in both the horizontal and vertical direction [14]. The random component of the velocity

(@Vr) was given by Eq (2) where R is a random number normally distributed around 0, and d
the diffusion constant is set to 0.02 m2s-1 horizontally and 10−3 m2s-1 in the vertical [59]. This

is justified by the relatively high spatial and temporal resolution in the model forcing.

@Vr ¼ R
ffiffiffiffiffi
2d
@t

r

ð2Þ

Initialization and concentration calculation. The salmon lice model was run from 1st of

April to 31st of August. As a part of the post-processing, the abundance of copepodids is calcu-

lated as lice concentration by aggregating the number of infective lice per grid cell (vertically

integrated over the upper 20m) diurnally. When dividing by the grid area, the lice concentra-

tion is expressed as number of lice copepodids per m2 per day.

Release of salmon lice from fish farms

The number of eggs hatched into the water is calculated from Stien et al. (2005) [24] based on

weekly reported temperature at 3 m depth, number of female lice per fish and number of fish

at each site, as described above. We assume that a female can produce 150 eggs per string [60].

In the model, the salmon lice nauplii are released from all active farm locations represented by

5 superparticles released every hour. The representation of salmon lice using superparticles

was done to simulate the dispersion of a great number of particles and include the mortality in

an efficient way where the computational power needed for the calculations is kept to a mini-

mum. Each of the 5 superparticles represent 1/5 of the total nauplii number calculated for each

release, regardless of the number nauplii released from the farm location. The maximum num-

ber of particles are 3 360 000.

Fish farmers report biomass and number of fish monthly to the Directorate of Fisheries

(Fiskeridirektoratet). Temperature at 3 m and counts of salmon lice, in three classes: 1) sessile

lice, 2) mobile lice and 3) adult female lice are reported weekly to The Norwegian Food Safety

Authority (Mattilsynet). The regulations require that the lice must be counted on at least 20

fish every week (10 fish in the period June 1st to January 31st), covering half of the cages [61].

These data are stored in a database at Norwegian Marine Data center at the Institute of Marine

Research (IMR). A weekly summary of these data is provided to the model group and is used

to calculate the source term, i.e. egg hatching, for the operational salmon lice modelling.

The number of fish in the farms is reported monthly to the authorities. Taking the median

of the fish counts in successive months in 2015 gives a linear reduction of approximately 1%

per month. These monthly data have been linearly interpolated to weekly values, to have the

same time resolution as the other data set. After the last reporting from a farm, we assume

slaughtering has taken place, and therefore let the number of fish decrease monotonically to

zero for 4 weeks.

Temperature data at 3 m depth is reported together with the lice counts within Tuesday the

week after the actual count. Most data fit into a band covering a reasonable seasonal cycle.

There are however clear outliers, both warm and cold, and long stretches of constant tempera-

ture values are not realistic. Missing values are also a challenge. Since the nauplii production

equation needs temperature input, the temperature series must be improved. There is for

example uncertainty in the depth behavior of the salmon host and therefore the temperature

experienced by the female adult lice. The objective is to provide reasonable temperatures at all
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locations throughout the year, using existing data. For each location and each week, the

median of the 11 geographically closest reported values is computed, this value is used for the

location that week. If there was a reported value for the location, it is replaced by this median

giving a smoothing effect. The total number of 11 locations was chosen as a compromise

between the desired robustness (filter out erroneous values) and locality.

Observed infestation pressure on wild caught trout

The Institute of Marine Research (IMR) coordinates a national salmon lice monitoring pro-

gram designed to monitor the infestations pressure on wild salmon and trout. Sampling is per-

formed at several regular and irregular stations along the Norwegian coast using traps or

gillnets [26,33], staying at each site for approximately two weeks. Several factors must be con-

sidered when deciding on the stations. Some are chosen for continuation of ongoing time

series, some to ensure complete geographical coverage and some are chosen based on pre-

dicted elevated infestation pressure from the salmon lice model. The sampling is focused on

two periods every year: May to June (during the smolt run) and June to August (during the

sea-phase of the sea trout and char). Due to a strong temperature-driven seasonality in salmon

lice infestation pressure an increase is expected from the first to the second observation period.

However, in some years the catchability has been significantly reduced during the second

round, especially in areas with elevated infestation pressure, and the quality of the data

retrieved is considered to be lower. There might be several reasons for this, e.g. increased mor-

tality and premature return to freshwater [39]. We will therefore only focus on the first period,

which is most relevant for the salmon smolt migration, and do not include any data from the

second period in this analysis. Due to logistical challenges the exact observation dates may

vary between years and not all production zones are covered chronological from south to

north. The exact timing of the collection of data from all the production zones is shown in S1

Table.

In the present analysis, we only included fish smaller than 150 g [62], based on the assump-

tion that small fish migrate shorter distances [36,39,63] and therefore the observed infestation

pressure would be a better representation of the local lice abundance near the location where

they were caught. The data material is then comprised of 1088 fish from 21 stations in 2015,

1733 fish from 44 stations in 2016 and 2390 fish from 37 stations in 2017.

For describing the infestation pressure on wild caught fish, we calculated the mean abun-

dance of copepodids, chalimus 1 and 2 on each station, and added these together into one

group providing mean abundance of young stages. These young stages were assumed to better

represent the local infestation pressure the fish had experienced just prior to being trapped,

rather than the total number of lice which includes adults that could have been attached to the

fish for months. The relative intensity, total number of lice per gram fish, was calculated on an

individual level and averaged over all fish including both infected and non-infected, and

named averaged relative intensity. The relative intensity is presented in categories: <0.1 lice/g,

0.1–0.2 lice/g, 0.2–0.3 lice/g, and >0.3 lice/g, as in Taranger et al. (2012) [62]. Prevalence was

the number of infected fish divided by the total number of fish [64].

The operational monitoring system

Throughout the year, several model simulations feed into the national operational monitoring

system. The annual cycle of operations starts early in spring, due to the special focus on the

salmon smolt migration. The output from the circulation model (nowcast) is supplied daily by

MET Norway (running daily prognoses with warm start from yesterday’s model output) and

downloaded to IMR. The salmon lice particle tracking model is operated by IMR and

Operational salmon lice monitoring system
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computations are performed every week with the latest sources (number of hatched eggs) cal-

culated from the data that have been reported by the industry. To ensure realistic copepodid

concentrations, the model is run for 40 days, where the first 30 days are the spin-up period and

the results from the last 10 days are summarized and published online (www.lakselus.no). Per-

sonnel from IMR and associated partners from other research and management institutions

assess the model output weekly and decide on locations with elevated infestation pressure that

will be sampled to evaluate model predictions. An operational fishing team is then directed to

the location with the objective to catch at least 50 fish per site. This procedure is continued

through the summer. Both data sources, model and observations, are evaluated together and

reported to the Norwegian Food Safety Authority several times a year.

When the operational season has passed, the model system is re-evaluated with updated

data. The weekly reports of lice numbers and the monthly reports of number of fish from the

farms are sometimes delayed, thus a rerun of the model system is necessary to ensure updated

input data. Also, the hydrodynamic ocean model (NorKyst800) is rerun with updated forcing

fields improving the quality of the hindcast compared to the nowcast. The updated model

results provide the knowledge base for the annual risk assessment of the salmon lice infestation

pressure on wild salmonids.

Evaluation of the modeled infestation pressure

The model supplies copepodid densities hourly in the whole domain. When comparing this

kind of model results with observations in a single point, the model output has to be processed

and information about spatial variability is lost as the results are merged over several grid cells

[4]. It is reasonable to assume that the fish caught in a specific location had been swimming

around this location, within an unknown radius of the fishing location. We have therefore

included many different averaging areas to investigate the sensitivity to averaging area. Hori-

zontally the modeled density is averaged within boxes of different size, 1x1, 3x3, 5x5 and up to

29x29 grid points, centered around the observation point. A wide number of box sizes was

included to investigate if the correlations would converge or reach a maximum. The output is

then summed over three weeks, including the two weeks of sampling and one week prior to

sampling. The timing is equal for all stations within a production area, and increasingly

delayed progressing northwards (see S1 Table for more details). The week prior to sampling is

added to account for lice that infested the fish prior to the sampling period. A summary of cor-

relations between the extracted variables are found in Table 3. The correlations are calculated

for 21 stations in 2015, 44 stations in 2016 and 37 stations in 2017. As described in [19] and

[4], the observations of lice on fish are generally zero-inflated. Ordinary validation techniques

used for homogenous physical properties (e.g. sea level, salinity, current velocity etc. [48]) are

not suited for this kind of comparison, hence Spearman rank correlation was used in this case.

Results

Evaluation of the hydrodynamical ocean model

In order to assess the quality of the model results, we compared modelled temperature and

salinity from January 2015 to December 2016 with observational data. The results are given in

Table 1, in selected z levels. Generally, there were a negative bias in temperature and a positive

bias in salinity in the model results, meaning that the model generally simulates colder and

more saline water than was observed. The salinity bias was particularly strong near the surface.

To examine this shortcoming in more detail, the analysis was repeated with z layers replaced

by S layers, i.e. the region between isohaline surfaces in the observations (Table 2). Here, we
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Table 3. Correlations between modeled and observed lice.

2015 2016 2017 2015–2017

Young Rel.int. Young Rel.int. Young Rel.int. Young Rel.int.

1x1 0.59 0.61 0.49 0.56 0.46 0.47 0.48 0.50

3x3 0.60 0.61 0.53 0.60 0.49 0.48 0.51 0.52

5x5 0.58 0.60 0.58 0.61 0.51 0.50 0.54 0.55

7x7 0.60 0.61 0.61 0.64 0.73 0.74 0.65 0.66

9x9 0.65 0.68 0.66 0.68 0.79 0.79 0.68 0.69

11x11 0.66 0.69 0.66 0.68 0.80 0.80 0.69 0.70

13x13 0.66 0.69 0.68 0.70 0.81 0.81 0.70 0.71

15x15 0.65 0.68 0.69 0.70 0.82 0.82 0.71 0.72

17x17 0.67 0.71 0.73 0.74 0.81 0.81 0.71 0.72

19x19 0.70 0.74 0.73 0.74 0.81 0.81 0.72 0.74

21x21 0.70 0.73 0.74 0.75 0.82 0.83 0.73 0.75

23x23 0.70 0.74 0.74 0.76 0.81 0.82 0.73 0.75

25x25 0.70 0.74 0.74 0.76 0.79 0.80 0.72 0.75

27x27 0.70 0.74 0.74 0.76 0.76 0.78 0.72 0.74

29x29 0.70 0.74 0.76 0.78 0.78 0.79 0.73 0.75

Spearman rank correlation between observations; mean abundance of young stages (Young) and averaged relative intensity (Rel.int.), and modeled lice densities within;

1x1, 3x3, 5x5 and up to 29x29 grid points for 2015, 2016 and 2017 individually and the whole time series combined.

https://doi.org/10.1371/journal.pone.0201338.t003

Fig 2. Hydrographic comparison. Scatter diagrams for temperature (left panel) and salinity (right panel) from the observations in layer 2 in Table 1. Observations and

model values are given as the horizontal and vertical axes, respectively. The color coding corresponds to the observed value of the alternative variable, i.e. salinity in the

left panel and temperature in the right panel. The color coding is shown by the inset graphic legends.

https://doi.org/10.1371/journal.pone.0201338.g002
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include only observations where both temperature and salinity data are available. The results

are presented in Table 2.

The challenge with a strong positive salinity bias is more pronounced where low salinities

are observed. The misrepresentation when salinity is >34.5 is much more modest. We also

take notice of the fact that the cold bias is very low in waters with salinity in the range [33.5–

34.9], but with a relatively large root mean square difference.

In Fig 2 we examine evaluation results in physical variable space as shown by the scatter dia-

gram for z layer 2. First, note that the color coding reflects the observed value for the alterna-

tive variable, which provides information about the water type represented by each

observation. For temperature (left panel) we find that the cold bias reported for z layer 2

(Table 1) is primarily a result of too cold conditions in relatively cold waters with high salini-

ties. A corresponding analysis for z layer 1 (not shown) reveals that the cold bias is enhanced

in the upper 5 m due to negative temperature offsets in warm, low salinity water masses.

With regard to the results for salinity, displayed in the right panel of Fig 2, the positive salin-

ity bias reported above is again obvious. We note that salinity values above 35.4 have not been

observed in the 5–25 m z layer, while the model results include higher salinities than this

value. Moreover, the model has a challenge when it comes to reproducing the lowest salinities,

making the range of salinity results significantly smaller in the model results than in the corre-

sponding observations.

In an attempt to ameliorate the discrepancies in results for salinity, nudging of the 3D salin-

ity to the model configuration which provides boundary conditions were introduced in the

nested model system. The results displayed in S2 Fig suggest that the nudging has improved

the results in z layer 2 and in the layers below. In the upper 5 m (z layer 1), most of the

improvement took place prior to late 2015, but the nudging introduced at that time may have

had a stabilizing effect on the quality of the salinity results from NorKyst800.

Near real-time distribution of salmon lice and evaluating the modeled

infestation pressure

Maps of the distribution of salmon lice are published weekly online starting in beginning of

April and continuing through the summer season. Fig 3 shows accumulated salmon lice abun-

dance during May from the hindcast, comparing 2015, 2016 and 2017. Salmon lice are abun-

dant from the southern tip to the northern cape of Norway, with several hot-spots at the west

coast and in the central part. The level is comparable between the years, but with high spatial

variability. Many regions have local fallowing regimes which strongly affects the interannual

variations in regional infestations pressure. In addition, there is a south-north gradient in lice

densities due to both high numbers of fish farms in the south and a temperature effect on the

lice reproduction rate. The model results indicate higher infestation pressure in 2016 and 2017

compared to 2015, and the highest infestation pressure was found in middle of Norway (zone

6 and 7, ref Fig 1) in 2016. The lice distribution did not extend as far northeast in 2015 as it did

in 2016 and 2017. The overall distribution extended further offshore during 2017, especially

from the middle part and northwards.

To evaluate the quality of the modeled lice density from the hindcast, we compared the

results with observed lice infestation pressure on the wild caught trout and char through mean

abundance of young stages and averaged relative intensity. The terminology and method for

comparison was explained in the method section and the results are presented here in Table 3.

The correlation coefficient varied between 0.46 and 0.83, where all are significantly different

from zero. The correlation was generally higher when including larger model areas, and higher

when using averaged relative intensity from the observations. There were only minor
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differences between 2015 and 2016, however 2017 started out with lower correlations at small

areas compared to the two other years and then ended up with higher correlations for the large

areas. When the three years were merge, the Spearman rank correlation still stayed above 0.7

for domains larger than 13x13. The analysis was done for both separate years and the whole

series combined to investigate if there were systematic differences between the years, that

would be masked if only the combined series were provided. The correlations started flattening

out at grid size 9x9 and the first top was reached at 11x11 (for averaged relative intensity in

2015), while the other variables reached maximum values at larger grid sizes and some con-

verged towards a constant value.

Fig 3. National distribution of salmon lice. Integrated lice density (#cop/m2) during May in 2015, 2016 and 2017.

https://doi.org/10.1371/journal.pone.0201338.g003
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Fig 4 shows the comparison between observed mean abundance of young stages and mod-

eled number of copepodids from the hindcast within 15x15 grid points for all stations includ-

ing both 2015 (n = 21), 2016 (n = 44) and 2017 (n = 37). The grid size 15x15 was chosen for

illustration because this was the size where the strongest correlation curve (young stages in

2017) reached the first top, however the pattern shown here was very similar across all sizes

above 9x9. There were no systematic differences between the three years, however low densi-

ties of lice were observed more frequently than high densities.

Model complementing observed lice infestations

Observed infestation pressure on wild caught trout provide valuable data for model compari-

sons, but when assessing the overall risk and sustainability within a production zone discrete

observation points are not sufficient to evaluate the overall infestation pressure in a region.

The operational salmon lice model is continuous in both time and space, and by using these

two complementary data sources together the assessment is improved. Two examples are

shown here, where the model results provide a more complete description of the infestation

pressure in 2016 from production zone 4 and 10 (ref. Fig 1). In production zone 4, the lice den-

sity was high in the southern part while lower in the northern part except for some local hot-

spots (Fig 5A). Capture of wild trout was done on five locations in this area; Herdlafjorden

(n = 49, number of fish), Herøyosen (n = 49), Solund (n = 23), Sørbøvågen (n = 9) and Maur-

stadvika (n = 64), covering the whole geographical range from south to north. The number of

samples from each site was corrected for size (<150gr), and the average weight of the remain-

ing fish was 51.1 grams. Almost all the fish from these locations had experienced a consider-

able infestation pressure with prevalence above 92% on all stations, and many (ranging from

22% to 100%) had a relative intensity above 0.3 lice/gr (Fig 5B). The salmon lice stage distribu-

tion varied significantly between the stations ranging from 25% to 89% young stages (Fig 5C).

Most of production zone 10 had low lice density while an area of high densities was found

in the strait between the island Senja and the mainland (Fig 6A). Thus, this was an example

where all of the observations are from locations with low infestation pressure, while the model

showed an area with higher levels in between. Trout were caught at four stations in this area;

Ervika (n = 14), Løksebotn (n = 47), Laksefjord (n = 50) and Malangen (n = 42), with average

weight of 66.9 grams for fish below 150 grams. Lice were found at all stations but with low to

medium prevalence, 2%-57% (Fig 6B). Fish with relative intensity of 0.3 lice/gr or higher were

only found on two stations, Ervika (14%) and Løksebotn (2%).

Discussion

Evaluation of the hydrodynamical ocean model

When comparing the model with observations, there were minor differences in temperature,

less than 0.4 in the upper 100 m, and moderate differences on salinity, less than 0.94 in the

upper 100 m. The time evolution of monthly temperature and salinity biases in the operational

NorKyst800 model since its initialization late in June 2012 is shown in S2 Fig. During this

4.5-year period, the only major modification in the operational configuration took place in

November 2015.

The excessive positive salinity bias values seen in the right panel of S2 Fig prompted an

investigation with a focus on the role of open boundary conditions for the evolution of salinity

in NorKyst800 configurations [65]. Melsom and Trodahl (2016) [65] noted that the model

which provides conditions along the open boundaries of NorKyst800 in the operational con-

figuration have higher salinities in the upper layers than two alternative basin-scale models.

Next, they ran a set of three 1-year experiments for the NorKyst800 domain that differed only
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in the provision of open boundary conditions. Their analysis revealed that both of the alterna-

tives to the present operational configurations performed better when compared to salinity

observations from the final 6-month period. The study by Melsom and Trodahl (2016) [65]

thus concluded with a recommendation that the outer model which provides conditions at the

open boundaries of the NorKyst800 domain should be replaced when the operational configu-

ration is revised. In order to properly account for variability, nesting with an outer (basin

scale) model which assimilates observations is the configuration of preference.

The modeled salinity bias is largest in low salinity water, and therefore will this discrepancy

be most dominant in the inner fjords with large river runoff. Since the model is running in an

operational mode, real-time runoff data is not available and climatological values are used.

Updated river runoff is available when the model system is revisited during fall, which

improves the quality of the hindcast compared to the nowcast. The salmon lice are known to

avoid low salinity waters (<20) by vertical migration [11], this avoidance mechanism may be

underestimated in the operational model. The lowest salinities are found in the innermost

fjords, in these regions the model will provide too high abundance of lice near the surface. In

Fig 4. Comparing modeled and observed lice. Observed mean abundance of young stages plotted against modeled lice density within 15x15 grid

points of the observations point for 2015 (blue), 2016 (red) and 2017 (black). Both variables are standardized for comparison (subtracted the mean

and divided by standard deviation) and plotted on a log-log scale.

https://doi.org/10.1371/journal.pone.0201338.g004
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addition, this will affect the horizontal distribution since lice situated near the surface are more

likely to be transported out of the fjord while lice deeper in the water column are transport

into the fjord [14]. At the same time, a model with 800 m horizontal resolution is too coarse to

resolve dynamics in narrow sounds and small fjords. Higher resolution, e.g. 160 m, is neces-

sary when studying smaller systems and local processes [10,21]. The 800 m model is well suited

for studying regional processes while local processes within small fjords should be assessed

with care. However, with the computer resources currently available, this is the highest resolu-

tion possible for full operational coverage of the entire coast.

Evaluation of the modeled infestation pressure

Helland et al. 2015 [26] highlighted statistical and ecological challenges regarding monitoring

of lice infestations on wild salmonids. Specifically, the observations of total lice on fish are

zero-inflated, which means high number of observations with low or zero abundance and a

few observations of high abundance of lice. This is a common distribution of parasites on

hosts. However, as the farming intensity has increased and the release of lice has increased

Fig 5. Production zone 4. Modeled lice density from May 23rd to June 12th 2016 (a) in production zone 4 showing the position of five locations with wild fish data.

Relative intensity (b) divided into categories; <0.1 lice/g, 0.1–0.2 lice/g, 0.2–0.3 lice/g and>0.3 lice/g, and distribution of lice stages (c) for the five locations;

Herdlafjorden, Herøyosen, Solund, Sørbøvågen and Maurstadvika.

https://doi.org/10.1371/journal.pone.0201338.g005

Fig 6. Production zone 10. Modeled lice density from June 20th to July 10th 2016 (a) in production zone 10 showing the position of four locations with wild fish data.

Relative intensity (b) divided into categories (see Fig 5) and distribution of lice stages (c) for the four locations; Ervika, Løksebotn, Laksefjord and Malangen.

https://doi.org/10.1371/journal.pone.0201338.g006
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accordingly, the number of low abundance observations has been reduced in the recent data

set (2015–2017) compared to the analyses based on data from 2004 to 2010 made by Helland

et al. 2015 [26]. In addition, the sampling procedure has changed. Previously the fish was only

caught with gillnets, frozen and transported to the lab before counting the lice, while now the

fish is mainly caught with traps and the lice is counted in the field shortly after catch by trained

personnel. The zero-inflated distribution of observed lice infestations is clearly seen in Fig 4.

The accuracy of the modelled estimate is variable in regions with low infestation pressure.

While the observations display a wide range of low values, the model has a very narrow range

of low estimates. In areas with low infestation pressure the comparison is generally more sensi-

tive to temporal and spatial mismatch, in addition the contribution of lice from wild fish is a

potential source which is not included in the model.

We have chosen to focus only on fish<150 g, and the young lice stages. The size is chosen

as these represent fish that has left the rivers for the first time and is less likely to have stayed in

the fjords during winter [39]. In addition, the habitat of these is restricted to a few kilometers

from their river of origin and therefore may better represent the local infestation pressure.

Also, as premature return to the river is observed as a response to heavy lice infestation pres-

sure [38], observations later in the season and on larger fish becomes more complicated. Previ-

ous analysis has indicated that temperature is a strong driver of the infestation pressure

[26,33,66], due to both that temperature in this period increases with season and due to a faster

reproduction rate with increasing temperatures. Helland et al. 2015 [26] also found a strong

correlation with fish size, which may either be due to that larger fish have stayed longer in the

sea or that small fish often have more sessile lice that is easier lost during freezing and thawing.

The objective of using statistical modeling [26,33,66] is to find which variable(s) that can

best explain the variation of the observations at hand. It is important to keep in mind that

mechanistic modeling as described in this monitoring system, is the complete opposite

approach, where the objective is to include all available information regarding the processes

relevant to the organism in focus. By modeling causal links between the environment and dis-

persal of lice, the operational system can provide a realistic infestation pressure along the entire

Norwegian coast. The model is not depending on input from the sparse observations of lice on

wild salmonids to provide results, however the comparison between the two, as shown here,

shows that the model system is suited for the purpose. The strength of the monitoring system,

including both observations and modeling, is that these two independent data sources are

complementary and in total will give a much better description of the actual conditions.

Model complementing observed lice infestations

The main objective for developing a national operational monitoring system, including both

an operational salmon lice model and the wild fish data, is to provide an improved system for

assessment of the risk and sustainability in all production zones. Figs 5 and 6 are included to

illustrate the importance of both data sources. If the assessment of production zones 4 and 10

only were made based on the wild fish data (b), zone 4 would be classified as a high risk area

while zone 10 would be a low/moderate risk area. However, when including the modeled infes-

tation pressure (a) into the assessment of zone 4, it is clear that the area of high infestation

pressure does not cover the entire production zone and the spatial variability within this region

is very high. Considering zone 10, the modeled infestation pressure shows that an area of high

infestation pressure was not covered by the wild fish data, which means that the overall risk in

the area was higher than the observations showed. It is therefore very important to consider

these two data sources as complementary, since a single source might under- or overestimation

the risk.
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Sources of uncertainty

The spatiotemporal distribution of salmon lice is strongly affected by the source term, i.e. the

release of salmon lice from fish farms. High quality of the reported data is essential and more

exact information about counting time could improve the reports [4]. If the fish farmers report

late or not at all, the operational model system cannot accurately calculate the infestation pres-

sure in a region. However, the rerun during fall includes also delayed reports and interpolates

the values to fill the gaps. The difference between the two simulations is shown in S3 Fig, for

production zone 10 as was previously discussed. The figure from the operational salmon lice

model a) shows copepodid density accumulated over 10 days centered around 2nd July 2016,

and included all the information available at that time and formed the bases for making a deci-

sion on fishing locations while b) is identical to Fig 6B. The locations in this region were

mainly chosen to represent important areas for salmonid fish in the area, only including areas

with moderate infestation pressure. The difference between a) and b) is considerable, where

the direct operational product shows a clear underestimate of the infestation pressure. The dif-

ference is mainly due to late/missing reports from fish farms in the area (www.BarentsWatch.

no) in the first approach, which are included in the second approach. It is therefore important

to emphasize that the operational product (nowcast) mainly functions as an early warning sys-

tem identifying high risk areas, while the rerun (hindcast) is used for developing knowledge-

based advice to management authorities.

A challenge with the use of lice infestation pressure derived from wild caught fish, is that

the history of the individual fish is unknown, i.e. where the fish has collected the observed lice.

The location of the fishing gear is probably not a representative position for exactly where

most of the fish in a specific sample have resided the last few weeks. Sea trout is known to have

a stationary behavior in inner fjord systems [63], however they can occasionally migrate over

longer distances (>500 km) [37]. To account for these challenges, we used several averaging

areas from the model (1x1, 3x3, 5x5 and up to 29x29 grid cells) to investigate the sensitivity to

resident area. The grid size 15x15, where the strongest correlation curve reached the first top,

is used for illustration in Fig 4. This box covers a distance of 12 km and an area of 144 km2.

Tagging studies of sea trout in western Norway recaptured most fish within 10–15 km from

the released river, while all were captured within 70 km [37,67]. These distances are compara-

ble, however the individual differences between single fish could be considerable. The differ-

ence among the averaging areas were not large, although an increase in correlation with

increasing area was seen before they flattened out. The sensitivity to averaging area seems to

be low.

The observations of salmon lice infestations on sea trout is used in the annual risk assess-

ment of the environmental impact of Norwegian salmon farming [62]. However, recent inves-

tigations comparing trawled trout and salmon have shown that there is a correlation between

lice levels, but also that trout generally has higher abundance of lice than salmon [68]. These

results are important to consider when assessing the overall risk in a production zone but will

not affect the correlation between modeled infestation pressure and observed lice on wild fish

found here.

Even though the model is used to choose observation locations, the model and the observa-

tions are still independent of each other. However, the distribution of observations is not inde-

pendent. A regular grid covering the entire Norwegian coast would have had a more skewed

distribution towards low infestation pressure. The quality of a monitoring system should not

be evaluated only on its ability to predict low risk areas but mainly on its ability to predict high

risk areas. We therefore consider it to be an advantage that the dataset contains a higher por-

tion of observations from areas with elevated infestation pressure.
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Direct measurements of infective copepodids in the pelagic phase are lacking [16], and con-

sequently we have to compare the modeled lice density with number of attached lice on fish.

This approach adds more uncertainty related to infection efficiency (depending on tempera-

ture, salinity and age [69]) and mortality of lice between attached stages on the fish. Previously

this model system has been validated against infestation levels in sentinel cages [4], however

observations indicate that sentinel cages underestimate the infection level compared to wild

fish due to the feeding behavior of wild sea trout [70]. The comparison performed in the pres-

ent paper is the first approach using the whole national dataset on wild caught fish for model

evaluation. The results are promising and provides confidence in the management system

which is developed, and initiates further evaluation work as more data becomes available and

the observations program is continued.

Conclusions

Major findings

The operational salmon lice model, including both the hydrodynamic ocean model and the

salmon lice particle tracking model, has been running for several years and has proven to be

reliable in the production of salmon lice infestation pressure in near real-time all along the

Norwegian coast. With regard to quality, this paper has showed good comparisons between

model and observations for both hydrographic properties (Fig 2) and salmon lice dispersion

(Fig 4). Previously the salmon lice model has been validated against sentinel cages in the Hard-

angerfjord [4], while here we have shown that the model is valid along the entire coast.

Updated infestation pressure all along the coast is invaluable information for evaluation of the

carrying capacity of wild fish with respect to salmon lice, and hence being an important mea-

sure for the management of the salmon industry towards sustainable growth. This model sys-

tem will, in combination with other model systems (e.g. [25]) and field observations, be

included in the knowledge base which is needed for implementation of the new “traffic light”

management system [1,2].

The national monitoring program for salmon lice on wild salmonids in Norway aims at

describing the infestation pressure on wild fish in all areas with intensive salmonid farming.

This is a substantial task, indicating the need for an adaptive surveillance based on predictions

of areas with high lice infestations on wild fish, which may be verified by subsampling of wild

salmonids. Implementation of an operational salmon lice model makes it possible to monitor

the infestation pressure along the entire Norwegian coast in near real-time. Here we have dem-

onstrated that a fully mechanistic approach covering the entire Norwegian coast is feasible

both technically and qualitatively. The maintenance of a fully operational model is technically

challenging and has been made possible through the cooperation between IMR and MET

Norway.

Since the model is able to predict areas of high infestation pressure, and by extensive use of

an adaptive monitoring where areas with high infestation pressure is verified using subsam-

pling, the locations where wild fish are captured are not randomly selected. This will affect the

overall assessment for an area if the observations of salmon lice on wild fish are interpreted by

themselves. In addition, field monitoring is time consuming and expensive especially in a

country like Norway where the coast is long, complex and many locations are remote. There-

fore, in order to evaluate the infestation pressure in the 13 production areas, observations and

model results must be considered complementary and should always be used together. Here

we have shown that the quality of the model results is good at the monitoring stations, with a

Spearman rank correlation above 0.7 for domains larger than 13x13, and the model is thus

well suited for evaluation of the infestation pressure also between the monitoring stations. By
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combining these two data sources, it is possible to assess the overall infestation pressure in a

production zone. Field monitoring will continue, and comparisons are done continuously to

make sure that the quality is maintained also in the future.

Value for management

Implementation of a national operational monitoring system makes it possible for the first

time to assess the infestation pressure from salmon lice along the entire Norwegian coast in

near real-time. This allows for a quick identification of high risk areas where salmon and trout

will be especially vulnerable for salmon lice infections. It is important to identify salmon lice

“hot spots” within the production zones and document with observations the salmon lice

intensity in these areas. It is also of crucial importance to have the possibility to monitor the

extent of a high risk area within the production zone and the time evolution of this fraction.

Altogether this makes it possible for the government to initiate necessary measures to mitigate

the high infestation pressure when it becomes a problem for wild salmonid fish. According to

the salmon lice risk index that estimates increased mortality due to salmon lice infections

made by Taranger et al. 2015 [62], all infections above 0.3 lice/gr are assumed to cause 100%

mortality. If the total lice-induced mortality within a production zone exceeds 30% on a popu-

lation level, the salmon production has to be reduced as a part of the ‘Traffic light system’

[1,2].

We have proven the quality of a modeled infestation pressure on wild fish, far away from

the source namely fish farms. It is therefore reasonable to assume that the model resolves the

most important transport mechanisms of salmon lice, specifically ocean circulation [10] and

lice behavior [21]. This is important since the government has decided that salmon lice

induced mortality on salmon smolt during migration from the river to the open ocean, will be

the index for controlling sustainable growth. The model system we have described here is well

suited for providing the infestation pressure that can be used for calculating number of lice on

salmon smolt migrating through a fjord system.

The operational model system is also suitable for developing a lice mitigation strategy for

fish farmers. The system can determine how the treatment, including different timing, at the

various farms in a production zone affects the regional infestation pressure. Next, it is possible

to test various model scenarios where different positioning and size of farms can be evaluated,

in addition to increase and decrease in production.
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S1 Table. Timing of the observations. Two-week intervals of fishing in the different produc-
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S1 Fig. Distribution of available observations from cruises during the period 2015–01–

2016–12. Each observation was assigned to the nearest grid cell in the model domain. The

sizes of the dots are scaled so that their areas correspond to the number of observations in each

grid cell. The dot size in the legend corresponds to the area when one observation is available.

The magnitude of the model biases is given by the color coding which is defined in the graphic

legend below the panels. The 1000 m depth isobaths are indicated by a black line.

(TIF)

S2 Fig. Time series of differences between model results and observations for temperature

(left) and salinity (right). Differences are positive when model values are higher than the cor-

responding observations. Displayed here are monthly means of the layer average differences at
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the positions from which observations are available. Results are displayed for the three selected

z layers as indicated by the line legends, corresponding to layers 1, 2 and 4 in Table 1. Thin

lines bridge months with no data.

(TIF)

S3 Fig. Comparing nowcast and hindcast. a) Operational model system, map used to select

fishing location, b) Rerun of model system during fall including all fish farms.

(TIFF)
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Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato

C, Thépaut JN, Vitart F. The ERA-interim reanalysis: configuration and performane of the data assimila-

tion system. QJR Meteorol Soc. 2011; 137: 553–597. https://doi.org/10.1002/qj.828

51. Budgell WP. Numerical simulation of ice-ocean variability in the Barents Sea region. Ocean Dynamics.

https://doi.org/10.1007/s10236-005-0008-3

52. Beldring S, Engeland K, Roald LA, Sælthun NR, VoksøA. Estimation of parameters in a distributed pre-

cipitation-runoff model for Norway. Hydro Earth Sys Sci. 2003; 7(3): 304–316.

53. Press WH, Flannery BP, Teukolsky SA, Vetterling WT. Section 17.1 Runge-Kutta Method. In: Numeri-

cal Recipes: The Art of Scientific Computing. 3rd ed. Cambridge University Press; 2007. ISBN 987-0-

521-88068-8.

54. Samsing F, Johnsen IA, Stien LH, Oppedal F, Albretsen J, Asplin L, et al. Predicting the effectiveness of

depth-based technologies to prevent salmon lice infection using a dispersal model. Prev Vet Med.

2016; 129: 48–57. https://doi.org/10.1016/j.prevetmed.2016.05.010 PMID: 27317322

55. Peterson I, Wroblewski JS. Mortality rate of fishes in the pelagic ecosystem. Can J Fish Aquat Sci.

1984; 41: 1117–1120.

56. Gravil HR. Studies on the biology and ecology of the free swimming larval stages of Lepeophtheirus sal-

monis (Krøyer, 1838) and Caligus elongatus Nordmann, 1832 (Copepoda: Caligidae). PhD thesis, Uni-

versity of Sterling. 1996.

57. Skartveit A, Olseth JA. Varighetstabeller for timevis belysning mot 5 flater på 16 norske stasjoner. 1988.

Meteorological Report Series 7. University of Bergen, Bergen. In Norwegian.

58. Aksnes DL, Dupont N, Staby A, FiksenØ, Kaartvedt S, Aure J. Coastal water darkening and implica-

tions for mesopelagic regime shifts in Norwegian fjords. Mar Ecol Prog Ser. 2009; 387: 39–49.

59. Sundby S. A one-dimensional model for the vertical distribution of pelagic fish eggs in the mixed layer.

Deep Sea Res A. 1983; 30: 645–661.

60. Jackson D, Minchin D. Aspects of the reproductive output of two caligid copepod species parasitic on

cultivated salmon. Invertebr Reprod Dev. 1992; 22: 87–90.

61. Anon (2012) Forskrift om bekjempelse av lakselus i akvakulturanlegg, https://lovdata.no/dokument/SF/

forskrift/2012-12-05-1140. In Norwegian.

62. Taranger GL, KarlsenØ, Bannister RJ, Glover KA, Husa V, Karlsbakk E, et al. Risk assessment of the

environmental impact of Norwegian Atlantic salmon farming. ICES J Mar Sci. 2015; 72: 997–1021.

63. Finstad B,Økland F, Thorstad EB, Bjørn PA, McKinley RS. Migration of hatchery-reared Atlantic

salmon and wild anadromous brown trout post-smolts in a Norwegian fjord system. J Fish Biol. 2005;

66: 86–96.

64. Bush AO, Lafferty KD, Lotz JM, Shostak AW. Parasitology meets ecology on its own terms: Margolis

et al. revisited. J Parasitol. 1997; 83(4): 575–583. PMID: 9267395

65. Melsom, A. and M. Trodahl, 2016: Evaluation of open boundary conditions in ROMS. MET report 20/

2016, 23pp. ISSN 2387-4201. Available as http://met.no/Forskning/Publikasjoner/MET_report/filestore/

OBCreport.pdf

66. Serra-Llinares RM, Bjørn PA, Finstad B, Nilsen R, Asplin L. Nearby farms are a source of lice for wild

salmonids: a reply to Jansen et al. (2016). Aquac Environ Interact. 2016; 8: 351–356.

67. Jensen KW. Seatrout (Salmo trutta L.) of the River Istra, western Norway. Rep Inst Freshw Res Drott-

ningholm. 1968; 48: 187–213.

68. Vollset KW, Halttunen E, Finstad B, KarlsenØ, Bjørn PA, Dohoo I. Salmon lice infestations on sea trout

predicts infestations on migrating salmon post-smolts. ICES J Mar Sci. 2017. https://doi.org/10.1093/

icesjms/fsx225

69. Tucker CS, Sommerville C, Wootten R. The effect of temperature and salinity on the settlement and sur-

vival of copepodids of Lepeophtheirus salmonis (Krøyer, 1837) on Atlantic salmon, Salmo salar L. J

Fish Dis. 2000; 23: 309–320.

Operational salmon lice monitoring system

PLOS ONE | https://doi.org/10.1371/journal.pone.0201338 July 31, 2018 24 / 25



70. Bjørn PA, Sivertsgård R, Finstad B, Nilsen R, Serra-Llinares RM, Kristoffersen R. Area protection may

reduce salmon louse infection risk to wild salmonids. Aquac Environ Interact. 2011; 1: 233–244.

71. The NCAR Command Language (Version 6.4.0) [Software]. (2017). Boulder, Colorado: UCAR/NCAR/

CISL/TDD. http://dx.doi.org/10.5065/D6WD3XH5

72. MATLAB and Statistics Toolbox Release 2016b, The MathWorks, Inc., Natick, Massachusetts, United

States.

Operational salmon lice monitoring system

PLOS ONE | https://doi.org/10.1371/journal.pone.0201338 July 31, 2018 25 / 25


