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Abstract

Background: The causal relation between parasitic sea lice on fish farms and sea lice on wild fish is a controversial
subject. A specific scientific debate has been whether the statistical association between infestation pressure (IP)
from fish farms and the number of parasites observed on wild sea trout emerges purely because of a confounding
and direct effect of temperature (T).

Methods: We studied the associations between louse infestation on wild sea trout, fish farm activity and temperature
in an area that practices coordinated fallowing in Nordhordland, Norway. The data were sampled between 2009 and
2016. We used negative binomial models and mediation analysis to determine to what degree the effect of T is
mediated through the IP from fish farms.

Results: The number of attached lice on sea trout increased with the T when the IP from fish farms was high but not
when the IP was low. In addition, nearly all of the effect of rising T was indirect and mediated through the IP. Attached
lice remained low when neighbouring farms were in the first year of the production cycle but rose substantially during
the second year. In contrast to attached lice, mobile lice were generally seen in higher numbers at lower water
temperatures. Temperature had an indirect positive effect on mobile louse counts by increasing the IP which, in turn,
raised the sea trout louse counts. Mobile louse counts rose steadily during the year when neighbouring farms were in
the first year of the production cycle and stayed high throughout the second year.

Conclusions: The estimates of the IP effect on louse counts along with the clear biennial pattern emerging due to the
production cycle of fish farms clearly indicate that fish farms play an important role in the epidemiology of sea lice on
wild sea trout. Furthermore, the mediation analysis demonstrates that a large proportion of the effect of T on louse
counts is mediated through IP.
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Background
Human activities can dramatically alter natural disease
and parasite dynamics in wild animals [1, 2]. On land,
such dynamics are often relatively easy to understand
due to the structural proximity to humans [3]. In the
marine habitat, the difficulties of appropriate surveil-
lance in combination with the vastness of the ocean have
made it more difficult to infer causal relations between
human activities and observed disease or parasite

dynamics in wildlife [4]. Sea lice (Lepeophtheirus salmo-
nis and Caligus spp.) are crustacean ectoparasites that
have been at the core of a long-running debate regarding
the impact of intensive aquaculture on wild salmonids
[5]. The main concern relates to (i) the decoupling of
parasite abundance and host density when additional
parasites produced in fish farms spillover to wild fish [6];
(ii) the potential interference with the natural allopatric
habitat use of adult and migrating salmon smoults [7];
and (iii) the evolutionary changes in virulence induced
by the presence of fish farms [8, 9].
For Atlantic salmon, impacts on their physiology and

survival attributable to lice have been documented
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through a series of laboratory studies. These studies have
shown that louse abundances above 0.1 louse per gram
of fish weight on post-smoults (i.e. young fish that have
recently entered the ocean) leads to physiological imbal-
ance and increased stress hormones, whereas high loads
(> 0.3 louse per gram of fish) can lead to acute death
[10–12]. Consequently, monitoring sea lice on sea trout
has become an important (and time-consuming) manage-
ment task in countries harbouring native wild salmonids
and with salmonid fish farming [13, 14]. Surveillance pro-
grammes have shown that these above-threshold levels
are frequently observed on wild salmonids in areas with a
high abundance of net pen fish farms [15, 16], but are
more seldom observed in areas without fish farms [17,
18]. However, the role of fish farms as the source of infest-
ation is still controversial.
Coordinated fallowing of fish farms has been applied ex-

tensively in Norway and internationally as a mitigation
tool to limit the spread of diseases that spread horizontally
from farm to farm. The underlying idea of the coordinated
fallowing is to break the life-cycle of parasites and diseases
that proliferate in high-host-density conditions [19]. In the
case of exotic diseases or diseases with low transmission
rates, fallowing is used to eradicate the disease locally and
reduce the risk of epidemic outbreaks. If the disease or
parasite is common or endemic to the surrounding envir-
onment and/or the transmission rate is relatively high (all
of which are true for sea lice), fallowing is used to limit
population growth, limit the use of chemical treatment
and/or combat the spread of strains resistant to chemical
treatment. Atlantic salmon usually require between 16
and 24 months from the time post-smoults are stocked in
the net pens to reach market size [20]. Consequently, even
though fallowing lowers louse levels during the first year
of production, several studies have demonstrated that
louse levels increase and usually peak sometime during
the second year of production [21–23]. This general pat-
tern is most likely driven by a combination of a high
population growth rate, a high rate of self-infestation, and
external infestation from nearby farms [24, 25]. This
biennial pattern in fish farms creates an ideal field experi-
ment to test the causal relation between sea lice on wild
fish and spillover effects from nearby fish farms. Several
studies have shown that louse infestation on wild fish is
higher when nearby fish farms are in their second year of
production [22, 26–28].
Recently, studies that correlate the estimated infest-

ation pressure by sea lice with farms with louse counts
on wild fish have become more common. For example,
Serra-Llinares et al. [29] and Helland et al. [30] used
various statistical methods to link the two and argued
that the significant correlation was proof that lice from
fish farms directly infested wild fish in the vicinity of the
fish farm. Such associations, however, are not without

controversy. For example, Jansen et al. [31] argued that
the modelled impact of fish farming on sea trout con-
ducted by Serra-Llinares et al. [29] did not consider the
seasonal progression of sea louse infestation on wild and
farmed fish and argued that the correlation between the
two could potentially occur as a consequence of
temperature. In response, the authors re-analysed their
data, showing that louse infestation pressure from fish
farms was an important factor even after correcting for
temperature [32]. However, although they corrected for
temperature in their analysis, the high collinearity be-
tween the variables and the lack of data covering the
seasonal progression, allowed the question of cause and
effect to linger.
In this study, we revisit this contentious issue by explor-

ing an independent dataset derived from sea louse surveil-
lance on sea trout between April and August in the years
2009–2016 in the region of Nordhordland, on the west
coast of Norway. The surrounding fish farms in the region
conducted coordinated fallowing throughout the sampling
period, thus creating an ideal time series for investigating
the role of fish farming on the sea louse infestations on
sea trout in marine waters. From 2012 to 2016, data were
available from surrounding fish farms to estimate infest-
ation pressure (IP) and temperature (T). We applied nega-
tive binomial generalized linear models (hereafter called
‘negative binomial models’) to these two datasets to study
the effect of fish farms on louse counts on wild sea trout.
Our second goal was to attempt to apply a mediation

analysis to understand the link between temperature and
IP from fish farms. Mediation analysis is a statistical pro-
cedure designed to determine how much of the total effect
of a variable (e.g. smoking) on an outcome (e.g. risk of a
heart attack) is an indirect effect due to the effect of smok-
ing on a mediating variable (e.g. blood pressure) and how
much is a direct effect (i.e. the increased risk even if blood
pressure is not raised) [33]. If there is interaction between
the effects of smoking and blood pressure (e.g. smoking is
more detrimental in someone with high blood pressure
than in someone with low blood pressure), mediation fur-
ther separates the effect of smoking into ‘pure’ effects (ig-
noring the effect of smoking on blood pressure) and ‘total’
effects (accounting for the effect of smoking on blood
pressure). In this specific case, we apply a mediation ana-
lysis in an attempt to determine the degree to which the
effects of annual variation and water temperature on louse
counts on wild sea trout is mediated by louse infestation
pressure from fish farms.

Methods
Description of sampling area
The present study was conducted on the west coast of
Norway, north of the city Bergen (Fig. 1). The study area
is a complex fjord system. It is located in the outer part of
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the migration route of several salmon and sea trout popu-
lations habiting rivers running into the fjord Osterfjorden,
one of which is the famous Vosso River [34]. The inner
fjord system (not depicted on the map) spills into the
outer fjord system at a narrow pass (left hand side of map)
and then splits into three fjord arms (Hjeltefjorden, Her-
dlafjorden and Radfjorden) that eventually form a rugged

archipelago. The topography and bathymetry of the inner
fjord results in water in which the upper level has low sal-
inity (< 20 ppt) during spring (except during abnormal
weather events). Consequently, migrating salmonids en-
counter sea lice (which do not tolerate low salinity) mostly
during the migration in the outer fjord [35]. This outer
fjord is where sea louse monitoring has been conducted.

Fig. 1 Map of the sampling area. The locations of the city of Bergen and the fish farms are indicated on the map (A, Area A; B, Area B). The
different colours and shapes represent the following: red triangles, fish farms fallowing in spring in odd years; red circles, fish farms fallowing in
autumn in even years; blue triangles, fish farms fallowing in spring in even years; red circles, fish farms fallowing in autumn in odd years.
Information provided by the Norwegian Food Authority. Black circles within each area are the exact locations of the sampling sites
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Sea louse monitoring
The number of sea lice on wild sea trout (Nlice) was
monitored between 2009 and 2016. The sampling was
done using either specially constructed trap nets [36] or
was taken from by-catch in gillnets. Sea lice on wild fish
were monitored during spring and early summer be-
cause this is believed to be the most sensitive recruit-
ment period for salmon and sea trout [37]. Sampling by
trap net was done on a dedicated location (Fig. 1, Area
A) at Herdla. This location was monitored using one,
two or three trap nets every year from 2010 to 2016.
The first year (2009), before the trap net design was
available, gillnets were used. Sampling of bycatch during
deployment of gillnets was done by one dedicated fisher
north of Radøy (Fig. 1, Area B). The trap nets were
checked once a day when catches were low and twice a
day when catches were high. Sea trout were normally
sampled in four periods ranging from 2 to 10 days,
where the goal was to catch approximately 30 trout. The
sampling period dates varied somewhat with years due
to logistics and catchability. Sampling from Area B was
done whenever the fisher deployed the net, and the data-
set from this site is therefore unbalanced. In sampling
Area A, large individual fish (> approx. 1 kg) were re-
leased with minimum handling and without being sur-
veyed for sea lice. However, some larger individuals were
euthanized and sampled according to defined humane
endpoints, as required by the animal welfare protocol.
All sampled fish were euthanized with a blow to the
head and placed in individual plastic bags and frozen for
later inspection of the sea lice.
Fish and associated sea lice were thawed and then

inspected with a lens in the laboratory. Care was taken
to analyse whether any lice were left in the plastic bag.
Lice were identified to their developmental stage accord-
ing to Hamre et al. [38]. Other fish measurements re-
corded were weight (in grams), total length (in mm), fin
erosion, other damages and scale loss. All fish with a
scale loss above 50% were excluded from further ana-
lysis. For the purpose of the analysis explained below, we
grouped the louse developmental stages in ‘attached’
(copepodite and chalimus) and ‘mobile’ (preadult and
adult) stages.

Infestation pressure from fish farms
The infestation pressure (IP) produced in the surround-
ing fish farms was calculated for the two sampling sites
as explained in Kristoffersen et al. [25], using life history
estimates from Stien et al. [39] and a distance function
from Aldrin et al. [24]. In short, the IP is based on the
distance penalized sea lice reproduction from the sur-
rounding fish farms, which include the mortality during
the development from hatching of the eggs to the at-
tached and mobile sea lice. The infestation pressures

were also calculated for some time prior to the observa-
tions, as a function of sea lice development time. A con-
densed description from the description in Kristoffersen
et al. [25] follows below.
Every active fish farm is obliged to report the fish

abundance and average number of adult female sea lice
per fish every week to the responsible authorities. The
total abundance of reproducing salmon lice (nAF) in the
fish farm is the product of these two factors. The fecundity
(F) in the model was defined as the temperature-
dependent daily reproduction from one adult female sea
louse, according to the following formula:

F = 300 eggs/[41.98/[T − 10 + (41.98 × 0.338)]]2

where 300 eggs are the mean combined reproduction in
both egg strings, the denominator in the fraction is the
development time of the egg strings, and T is the
temperature (°C). Total sea louse reproduction in a farm
i at time t can be expressed by Fi × nAF(i). The
reproduction was calculated daily.
The infestation pressure used herein assumes that the

larval concentration decreases with increasing seaway
distance to the release from the salmon farms, following
the relative risk function in Kristoffersen et al. [25]:

RRij = exp(−1.444 − ((dli)
0.57 − 1)/0.57)/ exp(−1.444

− ((dii)
0.57 − 1)/0.57)

where RRli is the relative risk of infestation to location l
from farm i based on the seaway distance to the farm
and the distance from the farm to itself (dii = 0) [24].
The seaway distance is a measure of the shortest way

in the water around islands and obstacles, calculated
with the gdistance package in R, using 16 directions
[40]. The total infestation pressure experienced in loca-
tion l is the sum of the infestation pressure from all ac-
tive farms within 200 km.
In this study, we compare the infestation pressure with

observed infestation on wild fish. We must therefore ac-
count for a time delay, which is the number of days from
the larval hatch until the lice appear on the fish. The
time delay during the pelagic stage is a function of the
temperature-dependent development time during the
nauplii stages (35 degree-days) and 4 days until attach-
ment is successful. The latter parameter is based on the
average survival during the copepodite stage. The daily
mortality rate q is a constant set to 0.17 in the nauplii
stages. Time-dependent mortality in the planktonic
stages therefore depends on the time delay from the
hatching of the eggs until attachment. The above calcu-
lations accounts for the time delay and mortality until
the attached stage of sea lice. To get to the mobile lice
stage, we must also account for the development time
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(155 degree-days) and the constant daily mortality rate
(0.05) during the entire period of attachment.

Temperature data
The estimated temperature (T) at a given place and time
is the distance-weighted average temperature measured
in surrounding fish farms, according to the following
formula:

T ¼
Xn

i

T i DistMax−Distið Þ=
X

Dist
� �

where i is the indicated fish farm, counting from 1 to
the number of active fish farms in Norway; Ti the
temperature measured in farm i, (DistMax - Disti) is the
inverse seaway distance from the point of interest to
farm i, and the denominator, ΣDist is the sum of all sea-
way distances. As with the louse counts on fish farms,
the temperature was only available from 2012 and on-
wards. Since we do not have any data on where the fish
that were caught had been prior to sampling, we opted
to calculate both T and IP for the sampling locations.

Production zones and cycles
Coordinated fallowing was employed in the study area
during the entire study period (2009–2016). The fallow-
ing zones are not obligatory, but are based on a consen-
sus between companies of fish farmers and the food
authorities. The fallowing zones were a compromise be-
tween what was logistically possible and creating zones
large enough to be effective in reducing disease spread.
Fish farms that could influence wild sea trout in Area A
mainly fallowed during autumn of odd years, whereas
fish farms influencing Area B mainly fallowed in the
spring of even years. Given the general pattern of highest
louse counts in fish farms during the second year of a pro-
duction cycle, even years were expected to show the high-
est infestation pressure of sea lice from fish farms on our
sampled fish. The reported louse numbers from fish farms
are publicly available online (https://www.barents-
watch.no/).

Data analysis
As explained above, the IP estimates were only available
from 2012 to 2016. Consequently, we conducted analyses
on two sets of data. Dataset 1 consisted of data with IP es-
timates collected between 2012 and 2016. Dataset 2 con-
tained the more limited data (with no IP estimates) that
covered the longer period (2009–2016). In Dataset 1, data
on 428 fish were available, but four sea trout with abnor-
mally short lengths (< 5 cm) or long lengths (> 100 cm)
were assumed to have incorrect data recorded and were
excluded, leaving 424 fish with complete data. The factors
of interest that we hypothesized to have affected counts of

attached (NliceA) and mobile (NliceM) lice were: Year, T and
IP. A causal diagram showing our hypothesized relations
among Year, T, IP and Nlice is shown in Fig. 2. In Dataset
2, where the IP was missing from 2009–2011, the sam-
pling day-of-year served as a proxy measure of louse
exposure because of the strong relation between date and
exposure; complete data were available for 1051 fish. At-
tached louse counts (NliceA) (copepodites and chalimus)
and mobile lice (NliceM) (preadult and adult) were analysed
separately in both data sets.

Dataset 1: Attached louse counts (NliceA)

Data manipulations and descriptive statistics The ex-
posure estimate (IP) was log-transformed, as were NliceA

and NliceM (after first adding 0.5 to all fish which had
counts of zero). Subsequently, all continuous variables
were standardized by subtracting their mean value and
dividing by their standard deviation. A list of the vari-
ables of interest is presented in Table 1, along with the
descriptive statistics of the variables. Histograms of the
NliceA and log(NliceA) were generated (Fig. 3). The linear-
ity of all relations among T, IP and log(NliceA) were eval-
uated using Lowess smoothed curves. Where evidence
of nonlinearity was observed, quadratic terms were
added to the regression models and retained if statisti-
cally significant.

Evaluation of year as a confounder The year was iden-
tified as a potential confounder of the effects of both T
and IP. To determine the strength of the association
among the Year and T and IP, these values were
regressed on Year (converted to a set of indicator vari-
ables), and the R2 of the regression was noted. A very
high R2 for IP regressed on Year suggested that collin-
earity might prevent the inclusion of year as a con-
founder in any models incorporating IP. Indeed,
including the year in a model with IP completely elimi-
nated any IP effects. Consequently, Year was excluded
from the negative binomial models. See also Additional
file 1: Text 1 and Figure S1, for a more detailed discus-
sion on this.

Fig. 2 Postulated causal diagram showing relations among the Year,
water temperature (T), estimated infection pressure arising from
adjacent salmon farms (IP), and attached or mobile louse counts on
wild sea trout (Nlice)
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Negative binomial models Negative binomial (NB) and
zero-inflated negative binomial (ZINB) models were fit-
ted to determine how T and IP (and their interaction) in-
fluenced the NliceA. A ZINB accounts for the possibility
that the number of zero counts observed was higher
than would be expected from the corresponding NB
model. In a ZINB, zero counts are assumed to arise in
one of two ways, either as very low values from the
negative binomial distribution or through some other
mechanism (e.g. trout not exposed to any lice).
In general, model building was achieved by using a

combination of criteria for selecting the best model.

These included using AIC values for selecting the model
type (e.g. fixed or random effects for the year in Dataset
2) and using P-values and AIC for determining if the
interaction and quadratic effect terms should be retained
in models, with parameter estimates ultimately being
evaluated as to whether they were reasonable. Terms
that were not significant (P < 0.05) and not a component
of a significant interaction term were removed. The
Akaike information criterion (AIC) values of the final
NB and ZINB models were compared, and a likeli-
hood ratio test was performed to compare the two
types of models.

Table 1 Descriptive statistics of variables of interest in datasets 1 and 2

Variable Acronyma Dataset 1 Dataset 2

n Mean ± SD Range n Mean ± SD Range

Attached lice count NliceA 424 24.73 ± 50.46 0–770 1051 17.3 ± 38.4 0–770

Log (attached lice count) - standardized NliceA_std 424 0.01 ± 1.00 -1.44–2.59 1051 0.0 ± 1.0 -1.3–2.98

Mobile (adult) lice count NliceM 424 11.79 ± 16.8 0–105 1051 15.3 ± 23.2 0–249

Log (mobile lice count) - standardized NliceM_std 424 0.00 ± 1.00 -1.42–2.06 1051 0.0 ± 1.0 -1.43–2.36

Temperature °C 424 9.83 ± 1.99 5.96–13.84 na na na

Temperature - standardized T 424 0.00 ± 1.00 -1.933–2.004 na na na

Estimate lice exposure 424 4,884,096 ± 6,660,133 10,060–3.77×107 na na na

Log (estimate lice exposure) - standardized IP 424 14.03 ± 2.10 9.22–17.44 na na na

Day na na na 1051 158.0 ± 19.2 95–214
aAcronym used throughout the manuscript and in all tables
Abbreviations: n number of observations, log log-transformed variable using the natural logarithm, SD standard deviation, na not available, NliceA number of
attached stages of lice, NliceM number of adult or mobile stages of lice, T, standardized water temperatures described in the text, IP estimated infestation pressure
described in the text

Fig. 3 Histograms of attached louse counts (NliceA) and standardized version of log(NliceA) from Dataset 1. Note: one fish with attached count of 770
was excluded from top graph for scaling reasons
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Mediation analyses Mediation analysis software that
allows for an NB or ZINB model of the outcome of
interest is not available, so mediation analyses with
log(NliceA) as the outcome, Year or T as the exposure of
interest, and either T or IP as the mediators were carried
out. To determine whether a linear (Guassian) model for
log(NliceA) was a reasonable approximation for a ZINB
model of NliceA, we compared the coefficients from the
models (both are on the log(NliceA) scale) and deter-
mined the correlation between observed values of louse
counts with those predicted from the two models on
both the log and count scales (Additional file 1: Text 2,
Table S1 and S2).
Initially, mediation analysis was used to determine

what portion of the effects of T were mediated through
IP. This included consideration of the possibility of a
T*IP interaction. Subsequently, mediation analysis with
Year as the exposure of interest was carried out. Because
Year was a 5-level categorical variable (2012–2016), the
level with the lowest louse counts (2013) was selected as
the baseline so that all year effects estimated would be
positive. Either T or IP was considered the mediator and
interaction effects between Year, and either of the medi-
ators (T or IP) were examined. In all analyses, the quad-
ratic effects of the mediators were included if required.
Output derived from the mediation analyses consisted of
estimates of direct and indirect effects and % mediated.

Dataset 1: Adult (mobile) louse counts (NliceM)
The regression model building processes described
above were repeated for the outcome NliceM, with the
exception that inclusion of Year as a confounder in the
negative binomial models of NliceM did not have a dele-
terious effect on the estimation of IP effects, so Year was
retained as a random effect in those regression models.
As with NliceA, marginal estimates of NliceM were plotted
against IP at each of three water temperatures (7, 10 and
13 °C). In mediation analyses with Year as the exposure
of interest, 2014 was selected as the baseline (reference)
year because it had the lowest adult louse counts.

Dataset 2: Attached and adult (mobile) louse counts (NliceA

and NliceM)
The possibility of using sampling day-of-year (Day) as a
proxy for IP in Dataset 2 was evaluated using data from
Dataset 1 in which both IP and day were recorded. Scat-
ter plots and Lowess smoothed curves for IP vs Day
were generated for each year. Separate plots were gener-
ated for years in which the regional aquaculture opera-
tions were in their first and second year of production,
i.e. production cycle (PC). Correlations within years
ranged from 85 to 98%. Plots and correlations are pre-
sented in Additional file 1: Table S1 and Figure S2). We
concluded that Day was an acceptable surrogate for IP.

As with the predictors in Dataset 1, Day was
standardized to have a mean of zero and standard
deviation of one.
As with Dataset 1, descriptive statistics were computed

(Table 1) and the linearity of continuous predictors (in
this case only Day) evaluated using Lowess smoothed
curves and polynomial functions as necessary. Both
negative binomial (NB) and zero-inflated negative bino-
mial (ZINB) models were fitted to NliceA and NliceM with
the ZINB model retained if it was statistically superior
to the NB model based on a likelihood ratio test. In all
cases, year of the production cycle (PC - first vs second)
and Year were retained as possible confounders. An
interaction term between Day and PC was included.
All basic analyses and negative binomial models were

fitted using Stata (version 15). Mediation analyses were
carried out using add-on programmes - medeff in Stata
and mdeflex in R [41]. Unless otherwise noted, statistical
significance was evaluated at P = 0.05.

Results
Dataset 1: Attached louse counts (NliceA)
Causal diagram and descriptive statistics
The causal diagram of the variables of interest is shown
in Fig. 2. Descriptive statistics of the key variables of
interest are presented in Table 1. Histograms of the
NliceA (with an extreme value of 770 removed for
scaling purposes) and the log(NliceA) are shown in
Fig. 3. The Lowess smoothed curves of all the rela-
tions among the standardized versions of the continu-
ous variables (including the T*IP interaction) are
shown in Additional file 1: Figure S3. Evidence exists
of non-linearity in the effects of IP, so a quadratic term
was added to an unconditional NB model and found to be
significant (P = 0.02). Consequently, the quadratic term
was retained in all subsequent models.

Negative binomial models
As noted above, the quadratic term for IP was signifi-
cant, so it was retained in all subsequent models. The
interaction between T and the linear component of IP
was statistically significant and, consequently, was in-
cluded in all models. The interaction with the quadratic
component of IP was not significant (P = 0.22) and,
hence, was not retained. Only the linear component of
IP was significant in the logistic portion of ZINB models,
so neither the T nor the T*IP interaction were included
in this part of the model.
The AIC of the final ZINB model was smaller than

that of the corresponding NB model, indicating that
the ZINB model was preferred. The likelihood ratio
test comparing the two models was highly significant
(P < 0.001).
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The final ZINB model is presented in Table 2. The es-
timate of alpha (dispersion parameter) for the NB por-
tion of the ZINB model was 1.07 (95% CI, 0.88–1.31),
indicating the variance in NliceA was much greater than
would have been expected under a Poisson distribution.
The main effects of IP (linear and quadratic) and T*IP
interaction were highly significant. Plots of marginal
estimates of louse counts (NliceA) vs exposure (IP) were
generated for each of three water temperatures (7 °C, 10
°C and 13 °C, representing approximately the 10th, 50th
and 90th percentiles of T, Fig. 4). The plot of marginal
estimates (Fig. 4, left panel) show that at low levels of IP,
slightly higher NliceA counts were observed in the coldest
water. At the moderate water T (10 °C), NliceA levels rose
gradually with increasing levels of IP. However, in
warmer water (13 °C), NliceA levels rose rapidly with
increasing IP. Captured fish were generally smaller in
warm water (> 11 °C) suggesting that the largest fish had
left the area as the water T increased (Additional file 1:
Figure S4).

Mediation analyses
The results from the mediation analysis with T as expos-
ure of interest and IP (both linear and quadratic terms)
as mediators and accounting for the significant T*IP
interaction are shown in Table 3. Specific interpretations
of the pure and direct estimates are also presented in
Table 3. The direct effects are much smaller, suggesting
that nearly all of the effects of T are mediated through
its effect on IP. The estimated partition of the total effect
of T that was mediated through IP was 78%, indicating
that T increased louse counts primarily by raising the IP.
For the mediation analyses with Year as the exposure

of interest and IP as the mediator, the overall estimate
was 63%, indicating that most of the annual effects were
mediated through IP. The variation in % mediated

through IP varied from 42% to 100% between years, with
some years having very large standard errors. No evi-
dence existed of the interaction between Year and IP.
For the mediation analyses, with Year as the exposure of

interest and T as the mediator, the overall estimate was
44%. The variation in % mediated through T varied from
3% to 36% between years. This indicates that more of the
annual effects were mediated through IP rather than
through changes in T from year to year. No evidence was
observed of an interaction between Year and T.

Dataset 1: Mobile (adult) louse counts
Descriptive statistics
Histograms of NliceM and log(NliceM) are shown in Fig. 5.
The Lowess smoothed curves of all the relations among
the standardized versions of continuous variables (in-
cluding the T*IP interaction) are shown in Additional file
1: Figure S5.

Negative binomial models
Both T and IP had significant quadratic effects on NliceM,
so the quadratic terms were retained in all subsequent
models. No evidence was observed of an interaction
between T and IP. The inclusion of Year in the negative
binomial models did not have strong detrimental effects
on the estimates of effects of IP, so Year was added as a
random effect to the NB models. No evidence existed of
zero inflation, so standard NB models were used, and
the final model is presented in Table 4, with marginal
predicted values for a range of IP values across three T
ranges being shown in Fig. 4 (right panel).
The most surprising difference in the results for NliceM

was that the effect of T was negative across all levels of
exposure. Higher counts of mobile lice were observed at
lower temperatures. However, regardless of T, increasing
levels of IP were associated with increasing mobile louse
counts. The estimate of alpha was 1.61 (95% CI: 1.39–
1.87) indicating that the variance in NliceA was much
greater than would have been expected under a Poisson
distribution.

Mediation analyses
Results from the mediation analysis of T as the exposure
of interest and IP as the mediating variable are shown in
Table 5. The direct effect was negative (lower NliceM as T
went up), but the indirect effect was positive (higher T
resulted in higher IP which in turn raised NliceM). Conse-
quently, the total effect was close to zero, and computa-
tion of a % mediated value would be meaningless.
For the mediation analyses with Year as the exposure

of interest and either IP or T as the mediators, the direct
effects for individual years were all positive, and most
were statistically significant, but indirect effects were all
very small (some negative, some positive), and none

Table 2 Final zero-inflated negative binomial model of the
effects of temperature (T), infestation pressure (IP) and their
interaction on NliceA (data set 1)

Coefficient SE P > Z 95% CI

Negative binomial portion of model

T -0.166 0.093 0.073 -0.348–0.016

IP 0.909 0.105 0.0001 0.703–1.114

T*IP interaction 0.803 0.096 0.0001 0.614–0.991

IP2 -0.545 0.087 0.0001 -0.716– -0.374

Intercept 2.960 0.079 0.0001 2.805–3.115

Alpha 1.074 0.111 0.877–1.315

Logistic (inflation) portion of model

IP -1.016 0.195 0.0001 -1.398– -0.634

Intercept -2.006 0.239 0.0001 -2.473– -1.538

Abbreviations: CI confidence interval, SE standard error
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were statistically significant. Overall estimates of % me-
diated were +0.03 and -0.03 for IP and T, respectively.
This indicates that the annual effects on mobile (adult)
louse counts were direct and due to factors other than
the effect of Year on IP or T.

Dataset 2: Attached and adult (mobile) louse counts
(NliceA and NliceM)
Descriptive statistics
Data were available from 1051 fish that were sampled
between day 95 (6 April) and 214 (3 August) in the years
2009–2016. Attached louse counts ranged from 0 to 770,
and adult louse counts ranged from 0 to 249 (Table 1).
Histograms of the counts of attached and mobile lice are
presented in Additional file 1: Figures S6 and S7. For both

NliceA and NliceM, no evidence of non-linearity was ob-
served in the effect of day, so these values were included
as a simple linear term in all models.

Negative binomial models
For attached lice, the ZINB model was not significantly
better than the NB model, so the simpler standard NB
model was retained. The final model is presented in
Table 6. Marginal effect estimates by day, for both the
first and second years of the production are presented in
the left panel of Fig. 6. Time of year (Day) had no effect
on attached louse counts during the first year of the pro-
duction cycle (when louse counts were generally low),
but counts increased dramatically towards the end of the
second year.

Fig. 4 Predicted values from a zero-inflated negative binomial model of NliceA and a negative binomial model of NliceM. Lines represent the
predicted values at water temperatures of 7 °C, 10 °C and 13 °C. Lines only cover the range of IP which existed at the relevant water temperature

Table 3 Decomposition of effects from mediation analysis for the effects of temperature on NliceA_std that are direct or mediated
through IP, taking into account interaction between T and IP

Effect Estimate SE Interpretation

Pure direct effect 0.007 0.060 The increase in log(NliceA) brought about by a 1 SD increase in T with IP held constant at an average T

Total direct effect 0.156 0.051** The increase in log(NliceA) brought about by a 1 SD increase in T with IP held constant at the level resulting
from that 1 SD increase in T

Pure indirect effect 0.418 0.047*** The increase in log(NliceA) brought about by increasing IP by the amount that would result from a 1 SD
increase in T while holding T constant at an average T

Total indirect
effect

0.567 0.073*** The increase in log(NliceA) brought about by increasing IP by an amount that would result from 1 SD
increase in T while holding T constant at the level resulting from that 1 SD increase in T

% of total effect
mediated

0.784 Based on a total effect of 0.723

*P < 0.05, **P < 0.01, ***P < 0.001
Abbreviations: IP, infestation pressure from fish farms; SE, standard error; SD, standard deviation; T, temperature
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For mobile lice, the ZINB model was significantly bet-
ter than the NB model, so it was retained. The final
model is presented in Table 7. Marginal effect estimates
by day, for both the first and second year of production,
are presented in the right panel of Fig. 6. During the first
year of the production cycle, a steady increase was ob-
served in the number of adult lice. However, in year 2,
virtually no change occurred in the number from day 95
to 214.

Discussion
This study demonstrates that the IP from fish farms
plays an important role in the epidemiology of sea lice
on wild sea trout. This result is indicated in the analysis
using modelled IP from fish farms (Dataset 1) and using
day of season and production cycle as a surrogate for
modelled IP (Dataset 2). The data indicate that the re-
cruitment of sea lice on wild sea trout (i.e. attached
stages of lice) increases dramatically throughout the

season when fish farms are in the second year of pro-
duction; this can be explained by the observed inter-
action between the increasing IP and increasing T.
Consequently, the effects of temperature alone cannot
explain episodes of a high number of lice in the attached
stages on sea trout in areas with high farming activity
throughout Norway [14]. In fact, almost all of the ob-
served effects of T on the attached louse counts on wild
sea trout occur because T increases the IP from the fish
farms (i.e. T effect is mediated through IP). However, no
evidence exists for the adult mobile stages, which is not
strongly linked to IP and surprisingly has a negative rela-
tion with T. In the following sections, we discuss the
patterns observed on attached and mobile lice on sea
trout separately.

Attached sea lice on sea trout
During periods where T was high, the number of at-
tached lice on sea trout increased exponentially with IP.
During periods of colder water, no effect of IP was ob-
served. These results corroborate the hypothesis that sea
lice from fish farms play an important role in the infest-
ation levels of sea lice on wild sea trout [16, 30, 31, 42],
at least during periods when the seawater temperature is
high. As argued by Jansen et al. [1], T and IP do correl-
ate; in fact, IP is a function of temperature biologically,
and in this instance, mathematically. IP is calculated
based on louse numbers on farmed fish, biomass and
temperature [25]. In an attempt to disentangle the asso-
ciation between T and IP, we applied a mediation ana-
lysis and provide evidence that the largest effect of T on

Fig. 5 Histogram of adult louse counts - original (NliceM) and standardized (NliceM_std) versions - in Dataset 1

Table 4 Final negative binomial model of the effects of T and
IP on NliceM

Coefficient SE P > Z 95% CI

T -0.46 0.11 0 -0.67– -0.25

T2 -0.21 0.08 0.01 -0.36– -0.05

IP 0.63 0.09 0 0.45–0.81

IP2 0.19 0.07 0.01 0.05–0.33

Intercept 2.29 0.09 0 2.12–2.47

Alpha 1.61 0.12 1.39–1.87

Abbreviations: CI, confidence interval; SE, standard error
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the number of lice attached to sea trout is through the
effect of IP from fish farms. This means that, in our
study area, most of the effect of T on the observed louse
counts of wild fish were most likely driven by increasing
the processes of reproduction of lice on fish farms and
the subsequent development and dispersal to wild fish.
Both Helland et al. [30] and Serra-Llinares et al. [31]
found that temperature was an important additional pre-
dictor in their model of sea lice on sea trout. Similar to
what we observed in our study, Serra-Llinares et al. [31]
also found an interaction between temperature and IP,
which suggested that the slope and intercept of the
association with IP were steeper and higher when the
temperature was warmer. This is very similar to our re-
sults. However, their model also included 16 parameters
(counting both the zero-inflation and count part of the
model), making the comparison with our model some-
what convoluted. Furthermore, the estimation of IP in
their studies and our study are somewhat different, mak-
ing the direct comparison even more complicated. Even
so, the general message is similar: temperature does in-
crease the natural infestation levels on wild sea trout, but
these levels will increase much more dramatically with
high IP from surrounding fish farms. In addition, our

study goes further by demonstrating that the effect of
temperature is mainly mediated through IP.
The link between the IP model and recruitment of the

attached stages of lice on sea trout corroborates the
findings of Kristoffersen et al. [43], who demonstrated
that the IP used in their study could explain a large pro-
portion (~39%) of the variation in lice abundance on sal-
mon smolts placed in sentinel cages at different
locations along the coast of Norway. The infestation
levels on fish in sentinel cages are thought to be easier
to predict than sea trout, as the spatial location of the
fish is known throughout the period of infestation com-
pared to sea trout where the exact location of infestation
is unknown. Even so, our model does suggest that the IP
is also an important predictor of the attached lice on sea
trout, corroborating these results. However, the infest-
ation levels on wild sea trout are much higher than what
has been observed on caged salmon, which begs the
question of whether the infestation on sentinel cages
correctly mimics the way sea trout encounters lice in the
wild. However, because we do not know how long the
wild-caught sea trout had been exposed to the infest-
ation pressure, we found it difficult to compare the two.
Approximately 60% of the between-year variation in

the attached louse counts on sea trout was mediated
through IP, whereas ~40% of the yearly variation was
mediated through T. However, importantly, these values
are not additive (they are not independent), so that the
total effect of Year mediated through T and IP is un-
known (but would be > 60% and < 100%). This indicates
that additional unknown factors exist, which may vary
from year to year and have an effect on the recruitment
of sea lice on wild sea trout. One such mechanism is
wild fish to wild fish infestations. For example, mobile
stages of lice on sea trout are relatively high throughout
the season in years when surrounding fish farms are in
their second year of production (see results from mobile
lice). Sea trout are known to stay close to shore [44],
and most likely aggregate in areas of high prey abun-
dance. The lice from individuals with high infestation
levels of adults may consequently produce infective
stages of sea lice in key sea trout habitat, particularly
when the temperature is high. In addition, outbreaks
with high louse counts do occasionally occur in areas

Table 5 Decomposition of effects from mediation analysis for the effects of T on NliceM_std that are direct or mediated through IP

Effect Estimate SE Interpretation

Natural direct effect -0.43 0.054*** The increase in log(NliceM) brought about by a 1 SD increase in T with IP held constant at an average T

Natural indirect effect 0.34 0.038*** The increase in log(NliceM) brought about by increasing IP by the amount that would result from a 1 SD
increase in T while holding T constant at an average T

Total effect -0.1 0.046* The increase in log(NliceM) brought about by increasing T by 1 SD

% mediated na

Abbreviations: IP infestation pressure from fish farms, na not available, SE standard error, SD standard deviation, T temperature
*P < 0.05, ***P < 0.001

Table 6 Final negative binomial model of the effects of
production cylce year (PC), day and their interaction on attached
lice counts (NliceA) (Dataset 2). 2016 omitted due to collinearity

Coefficient SE Z P > Z 95% CI

First PC 2.15 0.16 13.36 0 1.83–2.46

Day 0.06 0.07 0.88 0.38 -0.07–0.19

PC*Day 0.56 0.09 5.85 0 0.37–0.74

Year

2010 1.49 0.14 -10.5 0 -1.77– -1.21

2011 0.22 0.2 1.1 0.27 -0.17–0.62

2012 0.21 0.15 -1.43 0.15 -0.51–0.08

2013 0.04 0.21 0.19 0.85 -0.37–0.45

2014 0.14 0.16 0.83 0.41 -0.19–0.46

2015 1.81 0.2 8.91 0 1.41–2.2

Intercept 1.13 0.13 8.6 0 0.87–1.39

Abbreviations: CI, confidence interval; SE, standard error
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without fish farms (e.g. recently documented in the
Norwegian surveillance programme of sea lice in 2017),
and the wild fish to wild fish infestation should not be ig-
nored when trying to understand the sea lice population
dynamics. Furthermore, we had no data on salinity or
freshwater input in our system. Helland et al. [30] found
that freshwater is an important predictor of louse num-
bers on sea trout. Shephard et al. [16] also found that rain-
fall interacts with distance from fish farms in a model
predicting the size of the sea trout, suggesting that sea lice
from fish farms impact the growth of young sea trout
more during dry years. Consequently, the unexplained
year-to-year variation may be due partially to differences
in available freshwater and salinity the different years.
The results from the model including IP were also cor-

roborated by the results from the model using the pro-
duction cycle of the fish farms and the day of the season
as a predictor variable for the entire sampling period,
which clearly demonstrated that the numbers of at-
tached lice on sea trout only increased in years where
surrounding fish farms were in second year of produc-
tion, but not in years when fish farms were in the first
year of production. Biennial patterns of high abundance
of sea lice on wild fish and in plankton due to fallowing
cycles have been reported in various other studies [22,
26–28] and, in general, serves as strong evidence that
the presence of fish farms affects the parasite dynamics
of sea lice on wild salmonids. Furthermore, the clear

Fig. 6 Predicted values from a negative binomial model of NliceA (left panel) and a zero-inflated negative binomial model of NliceM (right panel)
from Dataset 2. Lines represent the predicted values in years in which the regional aquaculture operations were in their first or second production
cycle year (prcy)

Table 7 Final zero-inflated negative binomial model of the
effects of PC. day and their interaction on adult lice counts
(NliceM) (Dataset 2). 2016 omitted due to collinearity

Coefficient SE Z P > Z 95% CI

Negative binomial portion of model

First PC 1.62 0.16 10.34 0 1.31–1.93

Day 0.19 0.07 2.78 0.01 0.05–0.32

First PC*Day -0.26 0.09 -2.82 0.01 -0.43– -0.08

Year

2010 -0.71 0.13 -5.62 0 -0.96– -0.47

2011 0.53 0.19 2.87 0 0.17–0.9

2012 -0.98 0.14 -6.96 0 -1.26– -0.71

2013 0.06 0.21 0.26 0.79 -0.37–0.48

2014 -1.71 0.15 -11.62 0 -1.99– -1.42

2015 0.33 0.2 1.68 0.09 -0.06–0.72

Intercept 1.94 0.14 14.31 0 1.67–2.2

Alpha 1.4 0.1 1.23–1.6

Logistic (inflation) portion of model

Day -1.08 0.23 -4.68 0 -1.53– -0.63

Intercept -2.92 0.38 -7.73 0 -3.66– -2.18

Abbreviations: CI, confidence interval; SE, standard error
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seasonal pattern with increasing infestation later in the
season in years when fish farms are in the second year
of production demonstrates that sampling needs to con-
sider the seasonal progression of infestation levels on
fish farms when samples are collected.

Mobile lice on sea trout
The effects of the IP, T and production cycle on adult lice
(NliceM) were perhaps not as intuitive as the pattern
observed on the attached lice. The effect of IP from fish
farms was as expected, positive. The effect of T, however,
was negative. This unexpected result indicates that fish
sampled in periods when T was lower had a relatively
higher adult lice count than what was expected according
to the IP. This may be because the adult lice, to a larger
extent, reflect an IP over a prolonged period of time
because the lice can survive on sea trout as adults for
months. This could explain the observed effect in the
second dataset looking at production cycle and day of sea-
son, which suggests that, during the first year of produc-
tion, adult louse numbers increase throughout the season,
whereas during the second year, the adult louse numbers
stay high throughout. This may indicate that the sea trout
had already experienced a cumulative high IP in the pre-
ceding months. Mobile lice can directly impact the physi-
ology [10] and, consequently, the behaviour of sea trout
[45]. When T increases, the severity of these effects may
increase, and the sea trout with the highest infestations of
mobile sea lice may return to freshwater or die, leaving a
population with lower louse counts when the water is
warm. This could be the reason why we see a decreasing
size of captured sea trout with increasing temperature
(Additional file 1: Figure S4). Sea trout are known to
respond to lice-induced or other factors causing osmo-
regulatory stress by moving to brackish water or fresh-
water in order to restore the osmotic balance [44]. This
phenomenon has been termed ‘premature return’ [46, 47],
although this term perhaps is not adequate because it de-
scribes an adaptive behaviour to physiological stress,
which can also happen under natural conditions. However,
when the mechanism behind this behaviour is the IP from
fish farms, ‘premature return’ does serve as a description
of a behaviour that would not have occurred if fish farms
were not present. Consequently, ‘premature return’ can be
seen as a manmade effect that hinders sea trout to exploit
the marine habitat naturally [45]. Studies on the effect of
sea lice on behaviour have been conducted using acoustic
tags and an anti-parasitic agent in the Hardangerfjord [15,
48]. Results from these studies, however, are ambiguous,
as they demonstrate that anti-parasitic agents do not in-
crease survival, but that years with high IP lead to higher
likelihood of sea trout staying in freshwater for a longer
period of time. Exactly how T will impact this pattern is
unclear and warrants further studies.

If the sea trout were unable to rid themselves of the
high sea louse levels that were observed on the sea trout
every second year (2010, 2012, 2014 and 2016), the in-
festation would lead to direct mortality for a large pro-
portion of the population. More than 60% had more
than 0.3 louse/gram at the end of June in our samples,
and this level has been considered a lethal dose of sea
lice for sea trout in some publications [10, 37, 49]. How-
ever, even fish with heavy burdens of lice can survive by
returning to freshwater for a period before returning to
sea [46]. The proportion that survives and the cost of
sea louse infestation on sea trout is therefore not neces-
sarily proportional to the abundance of the lice on fish
but is a complex function of the infestation levels and
the physical environment (i.e. temperature, salinity and
distance to a freshwater source). A recent study has also
explored the effect of sea lice on the vertical behaviour
of trout, demonstrating that fish with more lice spend
more time at the surface, where salinity is low, and can
lose substantial amounts of lice by doing so (A. Mohn,
MSc thesis, UiB). On the other hand, the predation risk
is likely to increase as the trout changes its behaviour,
and this behaviour could make the trout more conspicu-
ous to both fish and avian predators. For management,
this creates a complexity that makes it difficult to dir-
ectly link sea louse counts to threshold levels of mortal-
ity observed in the laboratory.

Conclusions
When looking at the recently recruited sea lice on sea trout
(i.e. attached sea lice), the effects of temperature (T) and in-
fection pressure (IP) interacted, resulting in large increases
in louse counts when the water was warm. Nearly all of the
effects of rising T were mediated through IP. Approxi-
mately half of the year-to-year variation in the attached
louse counts was explained by changes in IP, but other (un-
measured) factors accounted for between 25 and 50% of
the annual variation. Attached louse counts remained low
when neighbouring farms were in the first year of the pro-
duction cycle but rose substantially throughout the season
in the second year. In contrast to attached lice, higher
counts of mobile lice were generally seen at lower water
temperatures, but this difference may have been attribut-
able to more heavily infested fish being removed from the
population. Temperature had an indirect positive effect on
mobile louse counts by increasing the IP, which in turn
raised the mobile louse counts. Mobile louse counts rose
steadily during the year when neighbouring farms were in
the first year of the production cycle and stayed high
throughout the second year. In conclusion, the estimates of
the IP effect on louse counts, along with a clear biennial
pattern emerging due to the production cycle of fish farms,
clearly indicate that fish farms play an important role in the
parasite infestations on wild sea trout.
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Nlice: Number of lice on individual sea trout; W: Weight in grams of fish;
PC: Production cycle; DY: Day of year; A: Area; IP: Infestation pressure;
T: Estimated temperature
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